题目内容
在数列{an}中,已知a1=1,an+1=αan+β(α>0)且a2=5,a3=17.
(Ⅰ)求an+1与an的关系式;
(Ⅱ)求证:{an+1}是等比数列;
(Ⅲ)求数列{n(an+1)}的前n项和Sn.
(Ⅰ)求an+1与an的关系式;
(Ⅱ)求证:{an+1}是等比数列;
(Ⅲ)求数列{n(an+1)}的前n项和Sn.
分析:(I)由已知:数列{an}满足a1=1,an+1=αan+β(α>0),a2=5,a3=17,即可得出α,β;
(II)由(Ⅰ)知,an+1=3an+2,变形为an+1+1=3(an+1),再利用等比数列的定义即可得出.
(III)利用“错位相减法”和等比数列的前n项和公式即可得出.
(II)由(Ⅰ)知,an+1=3an+2,变形为an+1+1=3(an+1),再利用等比数列的定义即可得出.
(III)利用“错位相减法”和等比数列的前n项和公式即可得出.
解答:解:(Ⅰ)∵数列{an}满足a1=1,an+1=αan+β(α>0),a2=5,a3=17,
∴
解得
∴an+1=3an+2.
(Ⅱ)由(Ⅰ)知,an+1=3an+2,∴an+1+1=3(an+1).
∵a1=1,即an+1≠0,
∴
=3,
∴{an+1}是首项为2,3为公比的等比数列.
(Ⅲ) 由(Ⅱ)知,an+1=2×3n-1,
∴Sn=1×2+2×2×31+3×2×32+…+n×2×3n-1,
3Sn=1×2×3+2×2×32+3×2×33+…+n×2×3n,
两式相减,得:2Sn=-1×2-2×31-2×32-…-2×3n-1+n×2×3n-1
=-2-2
+2n•3n,
∴Sn=
.
∴
|
|
∴an+1=3an+2.
(Ⅱ)由(Ⅰ)知,an+1=3an+2,∴an+1+1=3(an+1).
∵a1=1,即an+1≠0,
∴
| an+1+1 |
| an+1 |
∴{an+1}是首项为2,3为公比的等比数列.
(Ⅲ) 由(Ⅱ)知,an+1=2×3n-1,
∴Sn=1×2+2×2×31+3×2×32+…+n×2×3n-1,
3Sn=1×2×3+2×2×32+3×2×33+…+n×2×3n,
两式相减,得:2Sn=-1×2-2×31-2×32-…-2×3n-1+n×2×3n-1
=-2-2
| 3-3n |
| 1-3 |
∴Sn=
| 3n(2n-1)+1 |
| 2 |
点评:熟练掌握等比数列的定义、通项公式、“错位相减法”和等比数列的前n项和公式、待定系数法等即可得出.
练习册系列答案
相关题目