题目内容
已知向量
=(cosx,sinx),
=(2cos
,-2sin
),且x∈(-
,
].
求:(1)
•
和|
-
|的取值范围;
(2)函数f(x)=
•
-|
-
|的最小值.
| a |
| b |
| x |
| 2 |
| x |
| 2 |
| π |
| 9 |
| 2π |
| 9 |
求:(1)
| a |
| b |
| a |
| b |
(2)函数f(x)=
| a |
| b |
| a |
| b |
(1)∵
=(cosx,sinx),
=(2cos
,-2sin
)
∴a•b=cosx•2cos
+sinx•(-sin
)=2(cosx•cos
-sinx•sin
)=2cos
又∵x∈(-
,
],
∴
∈(-
,
]?cos
∈[
,1]
∴2cos
∈[1,2]即
•
∈[1,2]
∵|a-b|=
=
=
=
=
=
又∵cos
∈[
,1]∴-4cos
∈[-4,-2]
∴
∈[1,
];
(2)由(1)知:f(x)=
•
-|
-
|=2cos
-
设
=t,则t2=5-4cos
,2cos
=
∴f(x)=
-t=-
t2-t+
=-
(t2+2t+1)+
+
=-
(t+1)2+3(t∈[1,
])
∴由图象可知:当t=
时,函数f(x)取得最小值f(x)min=-
(
+1)2+3=1-
.
| a |
| b |
| x |
| 2 |
| x |
| 2 |
∴a•b=cosx•2cos
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
| 3x |
| 2 |
又∵x∈(-
| π |
| 9 |
| 2π |
| 9 |
∴
| 3x |
| 2 |
| π |
| 6 |
| π |
| 3 |
| 3x |
| 2 |
| 1 |
| 2 |
∴2cos
| 3x |
| 2 |
| a |
| b |
∵|a-b|=
| |a-b|2 |
| (a-b)2 |
| a2-2a•b+b2 |
=
(cos2x+sin2x)+(4cos2
|
=
1+4-4cos
|
5-4cos
|
又∵cos
| 3x |
| 2 |
| 1 |
| 2 |
| 3x |
| 2 |
∴
5-4cos
|
| 3 |
(2)由(1)知:f(x)=
| a |
| b |
| a |
| b |
| 3x |
| 2 |
5-4cos
|
设
5-4cos
|
| 3x |
| 2 |
| 3x |
| 2 |
| 5-t2 |
| 2 |
∴f(x)=
| 5-t2 |
| 2 |
| 1 |
| 2 |
| 5 |
| 2 |
| 1 |
| 2 |
| 5 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
∴由图象可知:当t=
| 3 |
| 1 |
| 2 |
| 3 |
| 3 |
练习册系列答案
相关题目