题目内容

(2008•奉贤区一模)记函数f(x)=
1
(x+1)(2-x)
的定义域为A,g(x)=log3[(x-m-2)(x-m)]的定义域为B.
(1)求A;
(2)若A⊆B,求实数m的取值范围.
分析:(1)由(2-x) (x+1)>0,得-1<x<2,由此能求出A.
(2)由(x-m-2)(x-m)>0,得B=(-∞,m)∪(m+2,+∞).由A⊆B,知m≥2或m≤-3.由此能求出实数a的取值范围.
解答:解:(1)由(2-x) (x+1)>0,
得-1<x<2,
即A=(-1,2).(6分)
(2)由(x-m-2)(x-m)>0,
得B=(-∞,m)∪(m+2,+∞),(10分)
∵A⊆B,
∴m≥2或m+2≤-1,
即m≥2或m≤-3,
故当B⊆A时,
实数a的取值范围是(-∞,-3]∪[2,+∞).(14分)
点评:本题考查集合的求法和求实数m的取值范围.解题时要认真审题,仔细解答,注意孙函数的定义域和求法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网