题目内容

a,b∈R,且a≠2,若定义在区间(-b,b)内的函数f(x)=lg
1+ax1+2x
是奇函数,则a+b的取值范围是
 
分析:由题意和奇函数的定义f(-x)=-f(x)求出a的值,再由对数的真数大于零求出函数的定义域,则所给的区间应是定义域的子集,求出b的范围进而求出a+b的范围.
解答:解:∵定义在区间(-b,b)内的函数f(x)=lg
1+ax
1+2x
是奇函数,
∴任x∈(-b,b),f(-x)=-f(x),即lg
1-ax
1-2x
=-lg
1+ax
1+2x

lg
1-ax
1-2x
=lg
1+2x
1+ax
,则有
1-ax
1-2x
=
1+2x
1+ax

即1-a2x2=1-4x2,解得a=±2,
又∵a≠2,∴a=-2;则函数f(x)=lg
1-2x
1+2x

要使函数有意义,则
1-2x
1+2x
>0,即(1+2x)(1-2x)>0
解得:-
1
2
<x<
1
2
,即函数f(x)的定义域为:(-
1
2
1
2
),
∴(-b,b)⊆(-
1
2
1
2
),∴0<b≤
1
2

∴-2<a+b≤-
3
2
,即所求的范围是(-2,-
3
2
]

故答案为:(-2,-
3
2
]
点评:本题考查了奇函数的定义以及求对数函数的定义域,利用子集关系求出b的范围,考查了学生的运算能力和对定义的运用能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网