题目内容
函数f(x)=
的定义域为R,且
f(-n)=0(n∈N*)
(Ⅰ)求证:a>0,b<0;
(Ⅱ)若f(1)=
,且f(x)在[0,1]上的最小值为
,试求f(x)的解析式;
(Ⅲ)在(Ⅱ)的条件下记Sn=f(1)+f(2)+…+f(n)(n∈N),试比较Sn与n+
+
(n∈N*)的大小并证明你的结论.
| 1 |
| 1+a•2bx |
| lim |
| n→∞ |
(Ⅰ)求证:a>0,b<0;
(Ⅱ)若f(1)=
| 4 |
| 5 |
| 1 |
| 2 |
(Ⅲ)在(Ⅱ)的条件下记Sn=f(1)+f(2)+…+f(n)(n∈N),试比较Sn与n+
| 1 |
| 2n+1 |
| 1 |
| 2 |
解(Ⅰ)∵f(x)定义域为R,∴1+a•2bx≠0,即a≠-2-bx而x∈R,∴a≥0.
若a=0,f(x)=1与
f(-n)=0矛盾,∴a>0,∴
f(-n)=
=
∴2-b>1即b<0,故a>0,b<0.
(Ⅱ)由(Ⅰ)知f(x)在[0,1]上为增函数,
∴f(0)=
,即
=
,∴a=1,f(1)=
=
,
∴2b=
,∴b=-2,∴f(x)=
=
=1-
.
(Ⅲ)当k∈N*时,Sn<n+
+
,证明如下:
f(k)=1-
<1,∴f(1)+f(2)+f(3)++f(n)<n
而n+
+
>n,∴k∈N*时,Sn<n+
+
若a=0,f(x)=1与
| lim |
| n→∞ |
| lim |
| n→∞ |
| lim |
| n→∞ |
| 1 |
| 1+a•2-bx |
|
(Ⅱ)由(Ⅰ)知f(x)在[0,1]上为增函数,
∴f(0)=
| 1 |
| 2 |
| 1 |
| 1+a |
| 1 |
| 2 |
| 1 |
| 1+a•2b |
| 4 |
| 5 |
∴2b=
| 1 |
| 4 |
| 1 |
| 1+2-2x |
| 4x |
| 1+4x |
| 1 |
| 1+4x |
(Ⅲ)当k∈N*时,Sn<n+
| 1 |
| 2n+1 |
| 1 |
| 2 |
f(k)=1-
| 1 |
| 1-4k |
而n+
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
练习册系列答案
相关题目