题目内容
数列{an}满足a1=2,an+1=an2+6an+6(n∈N×)(Ⅰ)设Cn=log5(an+3),求证{Cn}是等比数列;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设bn=
| 1 |
| an-6 |
| 1 | ||
|
| 5 |
| 16 |
| 1 |
| 4 |
分析:(I)由已知可得,an+1+3=(an+3)2,利用构造法令Cn=log5(an+3),则可得
=2,从而可证数列{cn}为等比数列
(II)由(I)可先求数列cn,代入cn=log5(an+3)可求an
(III)把(II)中的结果代入整理可得,bn=
-
,则代入Tn=b1+b2+…+bn相消可证
| cn+1 |
| cn |
(II)由(I)可先求数列cn,代入cn=log5(an+3)可求an
(III)把(II)中的结果代入整理可得,bn=
| 1 |
| an-6 |
| 1 |
| an+1-6 |
解答:解:(Ⅰ)由an+1=an2+6an+6得an+1+3=(an+3)2,
∴
=2
,即cn+1=2cn
∴{cn}是以2为公比的等比数列.
(Ⅱ)又c1=log55=1,
∴cn=2n-1,即
=2n-1,
∴an+3=52n-1
故an=52n-1-3
(Ⅲ)∵bn=
-
=
-
,∴Tn=
-
=-
-
.
又0<
≤
=
.
∴-
≤Tn<-
∴
| log | (an+1+3) 5 |
| log | (an+3) 5 |
∴{cn}是以2为公比的等比数列.
(Ⅱ)又c1=log55=1,
∴cn=2n-1,即
| log | (an+3) 5 |
∴an+3=52n-1
故an=52n-1-3
(Ⅲ)∵bn=
| 1 |
| an-6 |
| 1 |
| an2+6an |
| 1 |
| an-6 |
| 1 |
| an+1-6 |
| 1 |
| a1-6 |
| 1 |
| an+1-6 |
| 1 |
| 4 |
| 1 |
| 52n-9 |
又0<
| 1 |
| 52n-9 |
| 1 |
| 52-9 |
| 1 |
| 16 |
∴-
| 5 |
| 16 |
| 1 |
| 4 |
点评:本题考查了利用定义证明等比数列:数列{an}为等比数列?
=q≠0;利用构造法求数列的通项公式及数列的求和公式,属于对基本知识的综合考查.试题难度不大.
| an |
| an-1 |
练习册系列答案
相关题目