题目内容
已知数列{an}中,a1=2,an+1=(| 2 |
(Ⅰ)求{an}的通项公式;
(Ⅱ)若数列{bn}中,b1=2,bn+1=
| 3bn+4 |
| 2bn+3 |
| 2 |
分析:(Ⅰ)先对an+1=(
-1)(an+2)进行整理可得到an+1-
=(
-1)(an-
),即数列{an-
}是首项为2-
,公比为
-1的等比数列,再由等比数列的通项公式可得到an-
=
(
-1)n,进而得到an=
[(
-1)n+1].
(Ⅱ)用数学归纳法证明.当n=1时可得到b1=a1=2满足条件,然后假设当n=k时满足条件进而得到0<bk-
≤a4k-3-
当n=k+1时再对bk+1-
=
-
进行整理得到bk+1-
=
<(3-2
)2(bk-
)≤(
-1)4(a4k-3-
)=a4k+1-
,进而可得证.
| 2 |
| 2 |
| 2 |
| 2 |
| 2 |
| 2 |
| 2 |
| 2 |
| 2 |
| 2 |
| 2 |
| 2 |
(Ⅱ)用数学归纳法证明.当n=1时可得到b1=a1=2满足条件,然后假设当n=k时满足条件进而得到0<bk-
| 2 |
| 3 |
| 2 |
| 3bk+4 |
| 2bk+3 |
| 2 |
| 2 |
(3-2
| ||||
| 2bk+3 |
| 2 |
| 2 |
| 2 |
| 2 |
| 2 |
解答:解:(Ⅰ)由题设:an+1=(
-1)(an+2)=(
-1)(an-
)+(
-1)(2+
)=(
-1)(an-
)+
,an+1-
=(
-1)(an-
).
所以,数列{an-
}是首项为2-
,公比为
-1的等比数列,an-
=
(
-1)n,
即an的通项公式为an=
[(
-1)n+1],n=1,2,3,.
(Ⅱ)用数学归纳法证明.
(ⅰ)当n=1时,因
<2,b1=a1=2,所以
<b1≤a1,结论成立.
(ⅱ)假设当n=k时,结论成立,即
<bk≤a4k-3,
也即0<bk-
≤a4k-3-
.
当n=k+1时,bk+1-
=
-
=
=
>0,
又
<
=3-2
,
所以bk+1-
=
<(3-2
)2(bk-
)≤(
-1)4(a4k-3-
)=a4k+1-
.
也就是说,当n=k+1时,结论成立.
根据(ⅰ)和(ⅱ)知
<bn≤a4n-3,n=1,2,3,.
| 2 |
| 2 |
| 2 |
| 2 |
| 2 |
| 2 |
| 2 |
| 2 |
| 2 |
| 2 |
| 2 |
所以,数列{an-
| 2 |
| 2 |
| 2 |
| 2 |
| 2 |
| 2 |
即an的通项公式为an=
| 2 |
| 2 |
(Ⅱ)用数学归纳法证明.
(ⅰ)当n=1时,因
| 2 |
| 2 |
(ⅱ)假设当n=k时,结论成立,即
| 2 |
也即0<bk-
| 2 |
| 3 |
当n=k+1时,bk+1-
| 2 |
| 3bk+4 |
| 2bk+3 |
| 2 |
(3-2
| ||||
| 2bk+3 |
(3-2
| ||||
| 2bk+3 |
又
| 1 |
| 2bk+3 |
| 1 | ||
2
|
| 2 |
所以bk+1-
| 2 |
(3-2
| ||||
| 2bk+3 |
| 2 |
| 2 |
| 2 |
| 2 |
| 2 |
也就是说,当n=k+1时,结论成立.
根据(ⅰ)和(ⅱ)知
| 2 |
点评:本题主要考查求数列的通项公式的方法--构造法和数学归纳法的一般过程.考查综合运用能力和计算能力.
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|