题目内容
数列{an}满足a1=1,
=
,记数列{an2}前n项的和为Sn,若S2n+1-Sn≤
对任意的n∈N* 恒成立,则正整数t的最小值为( )
|
| 1 |
| an+1 |
| t |
| 30 |
| A.10 | B.9 | C.8 | D.7 |
∵
=
,∴
=
+4,
∴
-
=4(n∈N*),
∴{
}是首项为1,公差为4的等差数列,
∴
=1+4(n-1)=4n-3,∴an2=
∵(S2n+1-Sn)-(S2n+3-Sn+1)
=(an+12+an+22+…+a2n+12)-(an+22+an+32+…+a2n+32)
=an+12-a2n+22-a2n+32
=
-
-
=(
-
)+(
-
)>0,
∴数列{S2n+1-Sn}(n∈N*)是递减数列,
数列{S2n+1-Sn}(n∈N*)的最大项为
S3-S1=a22+a32=
+
=
,
∵
≤
,∴m≥
又∵m是正整数,
∴m的最小值为10.
故选A.
|
| 1 |
| an+1 |
| 1 |
| an+12 |
| 1 |
| an2 |
∴
| 1 |
| an+12 |
| 1 |
| an2 |
∴{
| 1 |
| an2 |
∴
| 1 |
| an2 |
| 1 |
| 4n-3 |
∵(S2n+1-Sn)-(S2n+3-Sn+1)
=(an+12+an+22+…+a2n+12)-(an+22+an+32+…+a2n+32)
=an+12-a2n+22-a2n+32
=
| 1 |
| 4n-1 |
| 1 |
| 8n+5 |
| 1 |
| 8n+9 |
=(
| 1 |
| 8n+2 |
| 1 |
| 8n+5 |
| 1 |
| 8n+2 |
| 1 |
| 8n+9 |
∴数列{S2n+1-Sn}(n∈N*)是递减数列,
数列{S2n+1-Sn}(n∈N*)的最大项为
S3-S1=a22+a32=
| 1 |
| 5 |
| 1 |
| 9 |
| 14 |
| 45 |
∵
| 14 |
| 45 |
| m |
| 30 |
| 28 |
| 3 |
又∵m是正整数,
∴m的最小值为10.
故选A.
练习册系列答案
相关题目