题目内容
3.对于函数y=f(x),当x∈(0,+∞)时,总有f(x)<xf′(x),若m>n>0,则下列不等式中,恒成立的是( )| A. | $\frac{f(m)}{n}$<$\frac{f(n)}{m}$ | B. | $\frac{f(m)}{m}$<$\frac{f(n)}{n}$ | C. | $\frac{f(m)}{n}$>$\frac{3f(n)}{m}$ | D. | $\frac{f(m)}{m}$>$\frac{f(n)}{n}$ |
分析 构造函数F(x)=$\frac{f(x)}{x}$,F′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$,当x∈(0,+∞)时,总有f(x)<xf′(x),可判断函数单调性,解决比较大小.
解答 解:构造函数F(x)=$\frac{f(x)}{x}$,F′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$
∵当x∈(0,+∞)时,总有f(x)<xf′(x),
∴F′(x)>0,
所以函数F(x)在(0,+∞)单调递增,
∵m>n>0,∴F(m)>F(n),
∴$\frac{f(m)}{m}$>$\frac{f(n)}{n}$
故选:D.
点评 本题考察了复合函数求导问题,导数应用判断单调性,比较大小,关键是构造函数,属于中档题.
练习册系列答案
相关题目
13.若三角形的两内角α,β满足:sinα•cosβ<0,则此三角形的形状为( )
| A. | 锐角三角形 | B. | 钝角三角形 | C. | 直角三角形 | D. | 不能确定 |
11.已知函数f(x)=$\left\{\begin{array}{l}{x-5,x≥6}\\{f(x+2),x<6}\end{array}\right.$则f(5)等于( )
| A. | 2 | B. | 3 | C. | 4 | D. | -2 |
8.已知函数f(x)=cosx-sinx,f′(x)为函数f(x)的导函数,那么$f'(\frac{π}{6})$等于( )
| A. | $\frac{{1-\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{3}-1}}{2}$ | C. | $-\frac{{1+\sqrt{3}}}{2}$ | D. | $\frac{{1+\sqrt{3}}}{2}$ |
17.已知集合A={x|x(3-x)≥0},B={x|x≤0},则A∩B等于( )
| A. | 0 | B. | 0≤x≤3 | C. | {0} | D. | {x|0≤x≤3} |
18.
已知函数g(x)=Acos(?x+ϕ)(A>0,?>0,|ϕ|<$\frac{π}{2}$)的部分图象如图所示,f(x)的图象可由g(x)的图象向左平移2个单位得到,则f(1)+f(2)+…+f(2004)=( )
| A. | 1 | B. | 3$+\sqrt{3}$ | C. | 2+$\sqrt{3}$ | D. | 0 |