题目内容
已知椭圆
的离心率为
,以原点为圆心,椭圆的短半轴为半径的圆与直线
相切,过点P(4,0)且不垂直于x轴直线
与椭圆C相交于A、B两点。
(1)求椭圆C的方程;
(2)求
的取值范围;
(3)若B点在于x轴的对称点是E,证明:直线AE与x轴相交于定点。
(1)解:由题意知
,∴
,即![]()
又
,∴![]()
故椭圆的方程为
2分
(2)解:由题意知直线l的斜率存在,设直线l的方程为![]()
由
得:
4分
由
得:![]()
设A(x1,y1),B (x2,y2),则
① 6分
∴![]()
![]()
练习册系列答案
相关题目
已知椭圆的离心率为e,两焦点分别为F1、F2,抛物线C以F1为顶点、F2为焦点,点P为抛物线和椭圆的一个交点,若e|PF2|=|PF1|,则e的值为( )
A、
| ||||
B、
| ||||
C、
| ||||
| D、以上均不对 |
已知椭圆的离心率为
,焦点是(-3,0),(3,0),则椭圆方程为( )
| 1 |
| 2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|