题目内容
数列{an}满足a1=1,
=
+1(n∈N*).
(Ⅰ)求证{
}是等差数列;
(Ⅱ)若a1a2+a2a3+…+anan+1>
,求n的取值范围.
| 1 |
| 2an+1 |
| 1 |
| 2an |
(Ⅰ)求证{
| 1 |
| an |
(Ⅱ)若a1a2+a2a3+…+anan+1>
| 16 |
| 33 |
分析:(I)由
=
+1可得:
=
+2,从而可证;
(II)由(I)知an=
,从而有anan+1=
=
(
-
),因此可化简为
>
,故问题得解.
| 1 |
| 2an+1 |
| 1 |
| 2an |
| 1 |
| an+1 |
| 1 |
| an |
(II)由(I)知an=
| 1 |
| 2n-1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
| 16 |
| 33 |
解答:解:(I)由
=
+1可得:
=
+2所以数列{
}是等差数列,首项
=1,公差d=2
∴
=
+(n-1)d=2n-1
∴an=
(II)∵anan+1=
=
(
-
)
∴a1a2+a2a3++anan+1=
(
-
+
-
++
-
)=
(1-
)=
∴
>
解得n>16
| 1 |
| 2an+1 |
| 1 |
| 2an |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
| 1 |
| a1 |
∴
| 1 |
| an |
| 1 |
| a1 |
∴an=
| 1 |
| 2n-1 |
(II)∵anan+1=
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴a1a2+a2a3++anan+1=
| 1 |
| 2 |
| 1 |
| 1 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
∴
| n |
| 2n+1 |
| 16 |
| 33 |
点评:本题主要考查构造法证明等差数列的定义及裂项法求和,属于中档题.
练习册系列答案
相关题目