题目内容

数列{an}满足a1=1,
1
2an+1
=
1
2an
+1
(n∈N*).
(Ⅰ)求证{
1
an
}
是等差数列;
(Ⅱ)若a1a2+a2a3+…+anan+1
16
33
,求n的取值范围.
分析:(I)由
1
2an+1
=
1
2an
+1
可得:
1
an+1
=
1
an
+2
,从而可证;
(II)由(I)知an=
1
2n-1
,从而有anan+1=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,因此可化简为
n
2n+1
16
33
,故问题得解.
解答:解:(I)由
1
2an+1
=
1
2an
+1
可得:
1
an+1
=
1
an
+2
所以数列{
1
an
}
是等差数列,首项
1
a1
=1
,公差d=2
1
an
=
1
a1
+(n-1)d=2n-1

an=
1
2n-1

(II)∵anan+1=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

a1a2+a2a3++anan+1=
1
2
(
1
1
-
1
3
+
1
3
-
1
5
++
1
2n-1
-
1
2n+1
)
=
1
2
(1-
1
2n+1
)=
n
2n+1

n
2n+1
16
33
解得n>16
点评:本题主要考查构造法证明等差数列的定义及裂项法求和,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网