题目内容

若自然数n使得作加法n+(n+1)+(n+2)运算不产生进位现象,则称n为“给力数”,如:32是“给力数”,23不是给力数.设小于1000的所有“给力数”的各个数位上的数字组成集合A,则用集合A的数字组成的无重复数字的最大偶数是(  )
分析:据自然数n使得作加法n+(n+1)+(n+2)运算均不产生进位现象,则称n为“给力数”,因此n的个位数的可能取值最大是2,其他位上的数字最大的取值是3,得到集合A,根据分类计数原理得到数字的个数.
解答:解:本题是一个分类计数问题,
由题意知给力数的个位取值:0,1,2
给力数的其它数位取值:0,1,2,3
∴A={0,1,2,3}
数字组成的无重复数字的最大偶数是3210
故选B
点评:本题考查新定义,考查分类计数原理,考查数字的排列问题,这是最常见的一种题目类型,注意数字0的特殊要求.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网