题目内容
设函数f(x)=
+
(x>0),数列{an}满足a1=1,an=f(
),n∈N*且n≥2.
(1)求数列{an}的通项公式;
(2)对n∈N*,设Sn=
+
+
+…+
,若Sn≥
恒成立,求实数t的取值范围.
| 2 |
| 3 |
| 1 |
| x |
| 1 |
| an-1 |
(1)求数列{an}的通项公式;
(2)对n∈N*,设Sn=
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| a3a4 |
| 1 |
| anan+1 |
| 3t |
| 4n |
分析:(I)由an=f(
)推出递推关系式an-a n-1=
,n≥2,从而有数列{an}为等差数列,最后写出通项公式.
(II)由(I)得an=
.an+1=
.得出anan+1=
,从而有
=
=
(
-
),利用拆项法求和Sn,再结合题设利用函数的最小值,从而求得实数t的取值范围.
| 1 |
| an-1 |
| 2 |
| 3 |
(II)由(I)得an=
| 2n+1 |
| 3 |
| 2n+3 |
| 3 |
| (2n+1)(2n+3) |
| 9 |
| 1 |
| anan+1 |
| 9 |
| (2n+1)(2n+3) |
| 9 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
解答:解:(I)由an=f(
)可得an-a n-1=
,n≥2,
故数列{an}为等差数列,
又a1=1,
它的通项公式an=
.
(II)Sn=
+
+
+…+
,
由(I)得an=
.an+1=
.
∴anan+1=
,
∴
=
=
(
-
),
∴Sn=
(
-
)=
,
Sn≥
?
≥
?t≤
,令g(n)=
,
g(n)=
=2n+3+
-6,由于2n+3≥5,故g(n)的最小值为
,
∴t≤
,
∴实数t的取值范围(-∞,
].
| 1 |
| an-1 |
| 2 |
| 3 |
故数列{an}为等差数列,
又a1=1,
它的通项公式an=
| 2n+1 |
| 3 |
(II)Sn=
| 1 |
| a1a2 |
| 1 |
| a2a3 |
| 1 |
| a3a4 |
| 1 |
| anan+1 |
由(I)得an=
| 2n+1 |
| 3 |
| 2n+3 |
| 3 |
∴anan+1=
| (2n+1)(2n+3) |
| 9 |
∴
| 1 |
| anan+1 |
| 9 |
| (2n+1)(2n+3) |
| 9 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
∴Sn=
| 9 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n+3 |
| 3n |
| 2n+3 |
Sn≥
| 3t |
| 4n |
| 3n |
| 2n+3 |
| 3t |
| 4n |
| 4n2 |
| 2n+3 |
| 4n2 |
| 2n+3 |
g(n)=
| 4n2-9+9 |
| 2n+3 |
| 9 |
| 2n+3 |
| 4 |
| 5 |
∴t≤
| 4 |
| 5 |
∴实数t的取值范围(-∞,
| 4 |
| 5 |
点评:本题考查数列的求和、数列的综合运用,解题时要认真审题,仔细解答,注意递推公式的灵活运用.
练习册系列答案
相关题目