题目内容
以抛物线y=
x2的焦点为圆心,且过坐标原点的圆的方程为( )
| 1 |
| 4 |
分析:求出抛物线的焦点坐标为 (0,1),可得所求圆的半径等于1,故所求圆的方程为 x2+(y-1)2=1,化简可得结论.
解答:解:抛物线y=
x2即 x2=4y,焦点坐标为 (0,1),故所求圆的半径等于1,故所求圆的方程为 x2+(y-1)2=1,即 x2+y2-2y=0,
故选A.
| 1 |
| 4 |
故选A.
点评:本题主要考查抛物线的标准方程,以及简单性质的应用,求圆的方程,属于中档题.
练习册系列答案
相关题目
以抛物线y=
x2的焦点为圆心,3为半径的圆与直线4x+3y+2=0相交所得的弦长为( )
| 1 |
| 4 |
A、
| ||||
B、2
| ||||
C、4
| ||||
| D、8 |