题目内容
电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:
![]()
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.
根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷”与性别有关?
|
| 非体育迷 | 体育迷 | 合计 |
| 男 | |||
| 女 |
| 10 | 55 |
| 合计 |
解 (1)由所给的频率分布直方图知,
“体育迷”人数为100×(10×0.020+10×0.005)=25.
“非体育迷”人数为75,则据题意完成2×2列联表:
|
| 非体育迷 | 体育迷 | 合计 |
| 男 | 30 | 15 | 45 |
| 女 | 45 | 10 | 55 |
| 合计 | 75 | 25 | 100 |
将2×2列联表的数据代入公式计算:
K2=
≈3.030>2.706.
所以在犯错误的概率不超过0.10的前提下可以认为“体育迷”与性别有关.
(2012年高考(辽宁文))电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;
![]()
将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性.
(Ⅰ)根据已知条件完成下面的
列联表,并据此资料你是否认为“体育迷”与性别
有关?
| 非体育迷 | 体育迷 | 合计 | |
| 男 | |||
| 女 | |||
| 合计 |
(Ⅱ)将日均收看该体育项目不低于50分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率.
电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名。右图是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图。将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”,已知“体育迷”中有10名女性。
(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料判断你是否有95%以上的把握认为“体育迷”与性别有关?
|
|
非体育迷 |
体育迷 |
合计 |
|
男 |
|
|
|
|
女 |
|
|
|
|
合计 |
|
|
|
(Ⅱ)将日均收看该体育项目不低于50 分钟的观众称为“超级体育迷”,已知“超级体育迷”中有2名女性,若从“超级体育迷”中任意选取2人,求至少有1名女性观众的概率。
![]()
![]()