题目内容
设sin(α+β)=
,cos(α-β)=
,则(sinα-cosα)(sinβ-cosβ)的值为______.
| 3 |
| 5 |
| 3 |
| 10 |
因为sin(α+β)=
,cos(α-β)=
,
则(sinα-cosα)(sinβ-cosβ)=sinαsinβ-sinαcosβ-cosαsinβ+cosαcosβ=(cosαcosβ+sinαsinβ)-(sinαcosβ+cosαsinβ)
=cos(α-β)-sin(α+β)=
-
=-
故答案为:-
| 3 |
| 5 |
| 3 |
| 10 |
则(sinα-cosα)(sinβ-cosβ)=sinαsinβ-sinαcosβ-cosαsinβ+cosαcosβ=(cosαcosβ+sinαsinβ)-(sinαcosβ+cosαsinβ)
=cos(α-β)-sin(α+β)=
| 3 |
| 10 |
| 3 |
| 5 |
| 3 |
| 10 |
故答案为:-
| 3 |
| 10 |
练习册系列答案
相关题目