题目内容

已知函数:f(x)=
x+1-a
a-x
(a∈R且x≠a).
(1)证明:f(x)+f(2a-x)+2=0对定义域内的所有x都成立;
(2)当f(x)的定义域为[a+
1
2
,a+1]时,求证:f(x)的值域为[-3,-2];
(3)若a>
1
2
,函数g(x)=x2+|(x-a) f(x)|,求g(x)的最小值.
分析:(1)由于f(x)=
1
a-x
-1,于是可得f(x)+f(2a-x)+2=0,与x取值无关得证;
(2)由定义域为[a+12,a+1],得-1≤a-x≤-
1
2
,-2≤
1
a-x
≤-1
,再由f(x)=
1
a-x
-1即可求解.
(3)根据题意,可得g(x)=x2+|x+1-a|,(x≠a),进而分①x≥a-1且x≠a与②x≤a-1两种情况讨论,由二次函数的性质,分别求出每种情况下f(x)的最小值,综合可得答案.
解答:(1)证明:∵f(x)=
x+1-a
a-x
=
1
a-x
-1,
∴f(2a-x)=
1
a-[2a-x]
-1=-
1
a-x
-1,
∴f(x)+f(2a-x)+2=
1
a-x
+(-
1
a-x
)-2+2=0,与x取值无关.
∴f(x)+f(2a-x)+2=0对定义域内的所有x都成立;
(2)证明:∵f(x)的定义域为[a+
1
2
,a+1]

∴-1-a≤-x≤-a-
1
2
,-1≤a-x≤-
1
2
,-2≤
1
a-x
≤-1,
又f(x)=
1
a-x
-1,
∴-3≤
1
a-x
-1≤-2,即f(x)的值域为[-3,-2].
(3)解:函数g(x)=x2+|x+1-a|,(x≠a),
①当x≥a-1且x≠a时,g(x)=x2+x+1-a=(x+
1
2
2+
3
4
-a,
当a>
1
2
时,a-1>-
1
2
,函数在[a-1,+∞)上单调递增,
g(x)min=g(a-1)=(a-1)2
②当x≤a-1时,g(x)=x2-x-1+a=(x-
1
2
2+a-
5
4

如果a-1>
1
2
即a>
3
2
时,g(x)min=g(
1
2
)=a-
5
4

如果a-1≤
1
2
即a≤
3
2
时,g(x)在(-∞,a-1)上为减函数,g(x)min=g(a-1)=(a-1)2
当a>
3
2
时,(a-1)2-(a-
5
4
)=(a-
3
2
2>0,
综合可得,当
1
2
<a≤
3
2
时,g(x)的最小值是(a-1)2
当a>
3
2
时,g(x)的最小值是a-
5
4
点评:本题考查函数的最值的求法及其意义,(2)关键在于对f(x)的化简,(3)的关键是根据二次函数的性质,进行分类讨论求g(x)的最值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网