题目内容
16.已知数列{an}满足:a1=1,an+1=$\frac{{a}_{n}+3}{{a}_{n}+1}$(n=1,2,3…)(1)设bn=|an-$\sqrt{3}$|,证明:bn+1<bn;
(2)证明:b1+b2+…+bn<$\sqrt{3}$+1.
分析 (1)通过题意易知an>0.利用数学归纳法证明即可,其中当n=k(k≥2)时通分再放缩可知bk+2=|$\frac{(\sqrt{3}-1)({a}_{k+1}-\sqrt{3})}{{a}_{k+1}+1}$|<($\sqrt{3}-1$)|ak+1-$\sqrt{3}$|,计算即得结论;
(2)通过(1)可知bn+1<($\sqrt{3}-1$)bn<$(\sqrt{3}-1)^{2}$bn-1<…<$(\sqrt{3}-1)^{n}$b1,利用等比数列的求和公式计算即得结论.
解答 证明:(1)依题意,易知an>0.
下面用数学归纳法来证明:
①当n=1时,a1=1,a2=$\frac{{a}_{1}+3}{{a}_{1}+1}$=$\frac{1+3}{1+1}$=2,
∴b1=|1-$\sqrt{3}$|=$\sqrt{3}-1$>b2=|2-$\sqrt{3}$|=$2-\sqrt{3}$;
②假设当n=k(k≥2)时有bk+1<bk,即bk+1=|ak+1-$\sqrt{3}$|<bk=|ak-$\sqrt{3}$|,
则bk+2=|ak+2-$\sqrt{3}$|=|$\frac{{a}_{k+1}+3}{{a}_{k+1}+1}$-$\sqrt{3}$|
=|$\frac{(\sqrt{3}-1)({a}_{k+1}-\sqrt{3})}{{a}_{k+1}+1}$|
<($\sqrt{3}-1$)|ak+1-$\sqrt{3}$|
=($\sqrt{3}-1$)bk+1
<bk+1,
即当n=k+1时,命题也成立;
由①、②可知:bn+1<bn;
(2)由(1)可知bn+1<($\sqrt{3}-1$)bn<$(\sqrt{3}-1)^{2}$bn-1<…<$(\sqrt{3}-1)^{n}$b1,
∴b1+b2+…+bn<$\sqrt{3}-1$+$(\sqrt{3}-1)^{2}$+…+$(\sqrt{3}-1)^{n}$
=$\frac{(\sqrt{3}-1)[1-(\sqrt{3}-1)^{n}]}{1-(\sqrt{3}-1)}$
=$(\sqrt{3}+1)$$[1-(\sqrt{3}-1)^{n}]$
<$\sqrt{3}$+1.
点评 本题是一道关于数列与不等式的综合题,考查运算求解能力,注意解题方法的积累,属于难题.
| A. | $\frac{5}{6}$ | B. | 1或2 | C. | $\frac{5}{6}$或2 | D. | 1或$\frac{5}{6}$ |
| A. | y=sin(4x-$\frac{π}{3}$) | B. | y=sin(x-$\frac{π}{6}$) | C. | y=sin(4x+$\frac{π}{3}$) | D. | y=sin(x-$\frac{π}{3}$) |