题目内容

若平面向量
a
b
满足|
a
|=2
(2
a
+
b
)•
b
=12
,则|
b
|
的取值范围为
 
分析:利用 (2
a
+
b
)•
b
=12
≤4|
b
|+|
b
|
2
,及 (2
a
+
b
)•
b
=12
|
b
|
2
-4|
b
|,求出|
b
|的取值范围.
解答:解:设 
a
b
的夹角为θ,∵(2
a
+
b
)•
b
=12
=2•2|
b
|cosθ+
b
2
≤4|
b
|+|
b
|
2

∴|
b
|≥2 或|
b
|≤-6(舍去).
又∵(2
a
+
b
)•
b
=12
=2•2|
b
|cosθ+
b
2
|
b
|
2
-4|
b
|,∴6≥|
b
|≥-2.
综上,6≥|
b
|≥2,
故答案为:[2,6].
点评:本题考查两个向量的数量积的定义,数量积公式的应用,利用 1≥cosθ≥-1是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网