题目内容
已知数列{an},{bn}分别是等差、等比数列,且a1=b1=1,a2=b2,a4=b3≠b4.
①求数列{an},{bn}的通项公式;
②设Sn为数列{an}的前n项和,求{
}的前n项和Tn;
③设Cn=
(n∈N),Rn=C1+C2+…+Cn,求Rn.
①求数列{an},{bn}的通项公式;
②设Sn为数列{an}的前n项和,求{
| 1 |
| Sn |
③设Cn=
| anbn |
| Sn+1 |
①设{an}的公差为d,{bn}的公比为q,则依题意
?
∴an=1+(n-1)×1=n;
bn=1×2n-1=2n-1.(4分)
②∵sn=
?
=
=2(
-
).
∴Tn=
+
+…+
=2[(
-
)+(
-
)+…+(
-
)]
=2(1-
)
=
.(8分)
③∵Cn=
=
=
-
.
∴Rn=C1+C2+…+Cn
=(
-
)+(
-
)+…+(
-
)
=
-1.
|
|
∴an=1+(n-1)×1=n;
bn=1×2n-1=2n-1.(4分)
②∵sn=
| n(n+1) |
| 2 |
| 1 |
| sn |
| 2 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Tn=
| 1 |
| s1 |
| 1 |
| s2 |
| 1 |
| sn |
=2[(
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=2(1-
| 1 |
| n+1 |
=
| 2n |
| n+1 |
③∵Cn=
| n•2n-1 | ||
|
| n•2n |
| (n+1)(n+2) |
| 2n+1 |
| n+2 |
| 2n |
| n+1 |
∴Rn=C1+C2+…+Cn
=(
| 22 |
| 3 |
| 21 |
| 2 |
| 23 |
| 4 |
| 22 |
| 3 |
| 2n+1 |
| n+2 |
| 2n |
| n+1 |
=
| 2n+1 |
| n+2 |
练习册系列答案
相关题目