ÌâÄ¿ÄÚÈÝ
7£®ÒÑÖªº¯Êýf£¨x£©=[x[x]]£¨n£¼x£¼n+1£¬n¡ÊN*£©£¬ÆäÖÐ[x]±íʾ²»³¬¹ýxµÄ×î´óÕûÊý£¬Èç[-2.1]=-3£¬[-3]=-3£¬[2.5]=2£®¶¨ÒåanÊǺ¯Êýf£¨x£©µÄÖµÓòÖеÄÎÞËØ¸öÊý£¬ÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Èô$\sum_{i=1}^{n}$$\frac{1}{{S}_{1}}$£¼$\frac{m}{10}$¶Ôn¡ÊN*¾ù³ÉÁ¢£¬Ôò×îСÕýÕûÊýmµÄֵΪ20£®·ÖÎö ÏÈÓÉÌâÒâÏÈÇó[x]£¬ÔÙÇóx[x]£¬È»ºóÔÙÇó[x[x]]£¬µÃµ½an£¬Sn£¬ÔËÓÃÁÑÏîÏàÏûÇóºÍºÍ²»µÈʽºã³ÉÁ¢Ë¼Ï룬¼´¿ÉµÃµ½mµÄ·¶Î§£¬½ø¶øµÃµ½×îСֵ£®
½â´ð ½â£º¡ßº¯Êýf£¨x£©=[x[x]]£¨n£¼x£¼n+1£©£¬
¡à[x]=n£¬Ôòx[x]=nx£¬
¡àº¯Êýf£¨x£©µÄÖµÓòÖеÄÔªËØ¸öÊýÊÇn£¬
¡àan=n£¬Sn=$\frac{n£¨n+1£©}{2}$£¬$\frac{1}{{S}_{n}}$=$\frac{2}{n£¨n+1£©}$=2£¨$\frac{1}{n}$-$\frac{1}{n+1}$£©£¬
Ôò$\sum_{i=1}^{n}$$\frac{1}{{S}_{1}}$=2£¨1-$\frac{1}{2}$£©+2£¨$\frac{1}{2}$-$\frac{1}{3}$£©+¡+2£¨$\frac{1}{n}$-$\frac{1}{n+1}$£©=2£¨1-$\frac{1}{n+1}$£©£¬
ÓÉÓÚ$\sum_{i=1}^{n}$$\frac{1}{{S}_{1}}$£¼$\frac{m}{10}$¶Ôn¡ÊN*¾ù³ÉÁ¢£¬
¼´ÓÐ2¡Ü$\frac{m}{10}$£¬¼´Îªm¡Ý20£®
Ôò×îСÕýÕûÊýmµÄֵΪ20£®
¹Ê´ð°¸Îª£º20£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éͨ¹ýÈ¡Õûº¯ÊýÀ´½¨Á¢Ðº¯Êý£¬½ø¶øÑо¿Æä¶¨ÒåÓòºÍÖµÓò£¬ÒÔ¼°¿¼²éÁËÊýÁÐÓë²»µÈʽµÄ×ۺϣ¬ÊôÓÚÖеµÌ⣮
| A£® | 400 | B£® | -510 | C£® | 400»ò-510 | D£® | 270 |
| A£® | 8a3 | B£® | $\frac{20}{3}$a3 | C£® | 2$\sqrt{2}$a3 | D£® | 5a3 |
| A£® | $\frac{3}{20}$ | B£® | $\frac{3}{16}$ | C£® | $\frac{7}{20}$ | D£® | $\frac{2}{5}$ |
| P£¨K2¡Ýk0£© | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.83 |
| A£® | 6.635 | B£® | 7.897 | C£® | 5.024 | D£® | 3.841 |