题目内容

△ABC中内角A,B,C的对边分别为a,b,c,向量
m
=(2sin
A
2
3
)
n
=(cosA,2cos2
A
4
-1)
,且
m
n

(I)求角A的大小;
(II)若a=
7
且△ABC的面积为
3
3
2
,求b十c的值.
(1)∵
m
n

3
cosA=2sin
A
2
(2cos2
A
4
-1)
…(2分)
3
cosA=2sin
A
2
(2cos2
A
4
-1)=2sin
A
2
cos
A
2
=sinA
…(4分)
tanA=
3
又A∈(0,π)
A=
π
3
…(6分)
(2)∵S△ABC=
1
2
bcsinA=
1
2
bcsin
π
3
=
3
2
3
…(8分)
∴bc=6…(9分)
由余弦定理得:a2=b2+c2-2bccos
π
3
…(10分)
?(b+c)2=7+3bc=25…(11分)
∴b+c=5…(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网