题目内容
(2011•浙江模拟)在△ABC中,角A,B,C所对边分别为a,b,c,且1+
=
.
(Ⅰ)求角A;
(Ⅱ)若△ABC是锐角三角形,求sinB+sinC的取值范围.
| tanA |
| tanB |
| 2c |
| b |
(Ⅰ)求角A;
(Ⅱ)若△ABC是锐角三角形,求sinB+sinC的取值范围.
分析:(Ⅰ) 在△ABC中,由正弦定理可得c=2rsinC,b=2rsinB 代入条件化简可得sin(A+B)=2sinCcosA,求出cosA=
,从而求得角A.
(Ⅱ)化简sinB+sinC 为
sin(C+
),根据角C+
的范围,结合正弦函数的定义域和值域求出sinB+sinC的取值范围.
| 1 |
| 2 |
(Ⅱ)化简sinB+sinC 为
| 3 |
| π |
| 6 |
| π |
| 6 |
解答:解:(Ⅰ) 在△ABC中,由正弦定理可得c=2rsinC,b=2rsinB.
∵1+
=
,∴1+
=
,化简可得 sin(A+B)=2sinCcosA.
∵A+B=π-C,∴sin(A+B)=sinC≠0,∴cosA=
,∵0<A<π,∴A=
.
(Ⅱ)sinB+sinC=sin(
-C)+sinC=sin
cosC-cos
sinC+sinC
=
sinC+
cosC=
sin(C+
).
∵锐角三角形,所以,0<C<
,0<B=
-C<
,∴
<C<
,
<C+
<
,
∴sin(C+
)∈(
,1],sinB+sinC∈(
,
].
∵1+
| tanA |
| tanB |
| 2c |
| b |
| tanA |
| tanB |
| 2sinC |
| sinB |
∵A+B=π-C,∴sin(A+B)=sinC≠0,∴cosA=
| 1 |
| 2 |
| π |
| 3 |
(Ⅱ)sinB+sinC=sin(
| 2π |
| 3 |
| 2π |
| 3 |
| 2π |
| 3 |
=
| 3 |
| 2 |
| ||
| 2 |
| 3 |
| π |
| 6 |
∵锐角三角形,所以,0<C<
| π |
| 2 |
| 2π |
| 3 |
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
| π |
| 6 |
| 2π |
| 3 |
∴sin(C+
| π |
| 6 |
| ||
| 2 |
| 3 |
| 2 |
| 3 |
点评:本题考查正弦定理、两角和差的正弦公式的应用,式子的变形,是解题的关键.
练习册系列答案
相关题目