题目内容
两个数列{an},{bn},满足
.(参考公式
)
求证:{bn}为等差数列的充要条件是{an}为等差数列.
求证:{bn}为等差数列的充要条件是{an}为等差数列.
证明:∵
,
∴bn+1=
,
∴
bn=a1+2a2+3a3+…+nan ①,
bn+1=a1+2a2+3a3+…+nan+(n+1)an+1.②
②减去①可得
bn+1﹣
bn=(n+1)an+1.
两边同时除以n+1可得
bn+1﹣
bn=an+1 ③,
∴
bn﹣
bn﹣1=an ④.
③减去④可得 an+1 ﹣an=(
bn+1 ﹣
bn )﹣(
bn ﹣
bn﹣1 )
=
bn+1 +bn+1 ﹣
bn﹣
bn﹣
bn+
bn﹣1﹣
bn﹣1
=
(bn+1﹣bn )+
(bn+1﹣bn )+
(bn﹣bn﹣1)﹣
(bn﹣bn﹣1)
=
(bn+1﹣bn )+
(bn+1﹣bn )﹣
(bn﹣bn﹣1).
由于{bn}为等差数列的充要条件是 bn+1﹣bn=bn﹣bn﹣1=常数d,
此时an+1 ﹣an=
d+
﹣
=
,是个常数.
故:{bn}为等差数列的充要条件是{an}为等差数列.
∴bn+1=
∴
②减去①可得
两边同时除以n+1可得
∴
③减去④可得 an+1 ﹣an=(
=
=
=
由于{bn}为等差数列的充要条件是 bn+1﹣bn=bn﹣bn﹣1=常数d,
此时an+1 ﹣an=
故:{bn}为等差数列的充要条件是{an}为等差数列.
练习册系列答案
相关题目