ÌâÄ¿ÄÚÈÝ
Èç¹ûÏîÊý¾ùΪn£¨n¡Ý2£¬n¡ÊN+£©µÄÁ½¸öÊýÁÐ{an}£¬{bn}Âú×ãak-bk=k£¨1£¬2£¬¡£¬n£©£¬ÇÒ¼¯ºÏ{a1£¬a2£¬¡£¬an£¬b1£¬b2£¬¡£¬bn}={1£¬2£¬3£¬¡£¬2n}£¬Ôò³ÆÊýÁÐ{an}£¬{bn}ÊÇÒ»¶Ô¡°nÏîÏà¹ØÊýÁС±£®
£¨¢ñ£©Éè{an}£¬{bn}ÊÇÒ»¶Ô¡°4ÏîÏà¹ØÊýÁС±£¬Çóa1+a2+a3+a4ºÍb1+b2+b3+b4µÄÖµ£¬²¢Ð´³öÒ»¶Ô¡°4ÏîÏà¹ØÊýÁС±{an}£¬{bn}£»
£¨¢ò£©ÊÇ·ñ´æÔÚ¡°15ÏîÏà¹ØÊýÁС±{an}£¬{bn}£¿Èô´æÔÚ£¬ÊÔд³öÒ»¶Ô{an}£¬{bn}£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨¢ó£©¶ÔÓÚÈ·¶¨µÄn£¬Èô´æÔÚ¡°nÏîÏà¹ØÊýÁС±£¬ÊÔÖ¤Ã÷·ûºÏÌõ¼þµÄ¡°nÏîÏà¹ØÊýÁС±ÓÐżÊý¶Ô£®
£¨¢ñ£©Éè{an}£¬{bn}ÊÇÒ»¶Ô¡°4ÏîÏà¹ØÊýÁС±£¬Çóa1+a2+a3+a4ºÍb1+b2+b3+b4µÄÖµ£¬²¢Ð´³öÒ»¶Ô¡°4ÏîÏà¹ØÊýÁС±{an}£¬{bn}£»
£¨¢ò£©ÊÇ·ñ´æÔÚ¡°15ÏîÏà¹ØÊýÁС±{an}£¬{bn}£¿Èô´æÔÚ£¬ÊÔд³öÒ»¶Ô{an}£¬{bn}£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨¢ó£©¶ÔÓÚÈ·¶¨µÄn£¬Èô´æÔÚ¡°nÏîÏà¹ØÊýÁС±£¬ÊÔÖ¤Ã÷·ûºÏÌõ¼þµÄ¡°nÏîÏà¹ØÊýÁС±ÓÐżÊý¶Ô£®
·ÖÎö£º£¨I£©ÒÀÌâÒâ¿ÉÇóµÃa1+a2+a3+a4ºÍb1+b2+b3+b4µÄºÍÓë²î£¬´Ó¶øÇóµÃa1+a2+a3+a4ºÍb1+b2+b3+b4µÄÖµ£¬ÔÙ¾ÙÀý£®
£¨II£©ÀûÓ÷´Ö¤·¨£¬¼ÙÉè´æÔÚ15ÏîÏà¹ØÊýÁУ¬¿ÉÇóµÃ2£¨a1+a2+¡+a15£©=585£¬´Ó¶øµÃ³öì¶Ü£¬¼´Ö¤Ã÷²»´æÔÚ£®
£¨III£©¶ÔÓÚÈ·¶¨µÄn£¬ÈÎȡһ¶Ô¡°nÏîÏà¹ØÊýÁС±{an}£¬{bn}£¬Áîck=2n+1-bk£¬dk=2n+1-ak£¨k=1£¬2£¬¡£¬n£©£¬Ö¤Ã÷{cn}£¬{dn}Ò²±ØÎª¡°nÏîÏà¹ØÊýÁС±£®ËµÃ÷·ûºÏÌõ¼þµÄ¡°nÏîÏà¹ØÊýÁС±ÓÐżÊý¶Ô£®
£¨II£©ÀûÓ÷´Ö¤·¨£¬¼ÙÉè´æÔÚ15ÏîÏà¹ØÊýÁУ¬¿ÉÇóµÃ2£¨a1+a2+¡+a15£©=585£¬´Ó¶øµÃ³öì¶Ü£¬¼´Ö¤Ã÷²»´æÔÚ£®
£¨III£©¶ÔÓÚÈ·¶¨µÄn£¬ÈÎȡһ¶Ô¡°nÏîÏà¹ØÊýÁС±{an}£¬{bn}£¬Áîck=2n+1-bk£¬dk=2n+1-ak£¨k=1£¬2£¬¡£¬n£©£¬Ö¤Ã÷{cn}£¬{dn}Ò²±ØÎª¡°nÏîÏà¹ØÊýÁС±£®ËµÃ÷·ûºÏÌõ¼þµÄ¡°nÏîÏà¹ØÊýÁС±ÓÐżÊý¶Ô£®
½â´ð£º½â£º£¨¢ñ£©ÒÀÌâÒ⣬a1-b1=1£¬a2-b2=2£¬a3-b3=3£¬a4-b4=4£¬Ïà¼ÓµÃ£¬
a1+a2+a3+a4-£¨b1+b2+b3+b4£©=10£¬ÓÖa1+a2+a3+a4+b1+b2+b3+b4=36£¬
Ôòa1+a2+a3+a4=23£¬b1+b2+b3+b4=13£®
¡°4ÏîÏà¹ØÊýÁС±{an}£º8£¬4£¬6£¬5£»{bn}£º7£¬2£¬3£¬1£¨²»Î¨Ò»£©
£¨¡°4ÏîÏà¹ØÊýÁС±¹²6¶Ô£º{an}£º8£¬5£¬4£¬6£»{bn}£º7£¬3£¬1£¬2
»ò{an}£º7£¬3£¬5£¬8£»{bn}£º6£¬1£¬2£¬4
»ò{an}£º3£¬8£¬7£¬5£»{bn}£º2£¬6£¬4£¬1
»ò{an}£º2£¬7£¬6£¬8£»{bn}£º1£¬5£¬3£¬4
»ò{an}£º2£¬6£¬8£¬7£»{bn}£º1£¬4£¬5£¬3
»ò{an}£º8£¬4£¬6£¬5£»{bn}£º7£¬2£¬3£¬1
£¨¢ò£©²»´æÔÚ£®
ÀíÓÉÈçÏ£º
¼ÙÉè´æÔÚ¡°15ÏîÏà¹ØÊýÁС±{an}£¬{bn}£¬
Ôòa1-b1=1£¬a2-b2=2£¬¡£¬a15-b15=15£¬Ïà¼Ó£¬µÃ£¨a1+a2+¡+a15£©-£¨b1+b2+¡+b15£©=120
ÓÖÓÉÒÑÖªa1+a2+¡+a15+b1+b2+¡+b15=1+2+¡+30=465£¬ÓÉ´Ë2£¨a1+a2+¡+a15£©=585£¬ÏÔÈ»²»¿ÉÄÜ£¬ËùÒÔ¼ÙÉè²»³ÉÁ¢£®
´Ó¶ø²»´æÔÚ¡°15ÏîÏà¹ØÊýÁС±{an}£¬{bn}
£¨¢ó£©¶ÔÓÚÈ·¶¨µÄn£¬ÈÎȡһ¶Ô¡°nÏîÏà¹ØÊýÁС±{an}£¬{bn}£¬
Áîck=2n+1-bk£¬dk=2n+1-ak£¨k=1£¬2£¬¡£¬n£©£¬
ÏÈÖ¤{cn}£¬{dn}Ò²±ØÎª¡°nÏîÏà¹ØÊýÁС±£®
ÒòΪck-dk=£¨2n+1-bk£©-£¨2n+1-ak£©=ak-bk=k£¨k=1£¬2£¬¡£¬n£©£¬
ÓÖÒòΪ{a1£¬a2£¬¡£¬an£¬b1£¬b2£¬¡£¬bn}={1£¬2£¬3£¬4£¬¡£¬2n}£¬ºÜÏÔÈ»ÓÐ{£¨2n+1£©-a1£¬£¨2n+1£©-a2£¬¡£¬£¨2n+1£©-an£¬£¨2n+1£©-b1£¬£¨2n+1£©-b2£¬¡£¬£¨2n+1£©-bn}={1£¬2£¬3£¬¡£¬2n}£¬
ËùÒÔ{cn}£¬{dn}Ò²±ØÎª¡°nÏîÏà¹ØÊýÁС±£®
ÔÙÖ¤ÊýÁÐ{cn}Óë{an}ÊDz»Í¬µÄÊýÁУ®
¼ÙÉè{cn}Óë{an}Ïàͬ£¬Ôò{cn}µÄµÚ¶þÏîc2=2n+1-b2=a2£¬ÓÖa2-b2=2£¬Ôò2b2=2n-1£¬¼´b2=
£¬ÏÔȻì¶Ü£®
´Ó¶ø£¬·ûºÏÌõ¼þµÄ¡°nÏîÏà¹ØÊýÁС±ÓÐżÊý¶Ô£®
a1+a2+a3+a4-£¨b1+b2+b3+b4£©=10£¬ÓÖa1+a2+a3+a4+b1+b2+b3+b4=36£¬
Ôòa1+a2+a3+a4=23£¬b1+b2+b3+b4=13£®
¡°4ÏîÏà¹ØÊýÁС±{an}£º8£¬4£¬6£¬5£»{bn}£º7£¬2£¬3£¬1£¨²»Î¨Ò»£©
£¨¡°4ÏîÏà¹ØÊýÁС±¹²6¶Ô£º{an}£º8£¬5£¬4£¬6£»{bn}£º7£¬3£¬1£¬2
»ò{an}£º7£¬3£¬5£¬8£»{bn}£º6£¬1£¬2£¬4
»ò{an}£º3£¬8£¬7£¬5£»{bn}£º2£¬6£¬4£¬1
»ò{an}£º2£¬7£¬6£¬8£»{bn}£º1£¬5£¬3£¬4
»ò{an}£º2£¬6£¬8£¬7£»{bn}£º1£¬4£¬5£¬3
»ò{an}£º8£¬4£¬6£¬5£»{bn}£º7£¬2£¬3£¬1
£¨¢ò£©²»´æÔÚ£®
ÀíÓÉÈçÏ£º
¼ÙÉè´æÔÚ¡°15ÏîÏà¹ØÊýÁС±{an}£¬{bn}£¬
Ôòa1-b1=1£¬a2-b2=2£¬¡£¬a15-b15=15£¬Ïà¼Ó£¬µÃ£¨a1+a2+¡+a15£©-£¨b1+b2+¡+b15£©=120
ÓÖÓÉÒÑÖªa1+a2+¡+a15+b1+b2+¡+b15=1+2+¡+30=465£¬ÓÉ´Ë2£¨a1+a2+¡+a15£©=585£¬ÏÔÈ»²»¿ÉÄÜ£¬ËùÒÔ¼ÙÉè²»³ÉÁ¢£®
´Ó¶ø²»´æÔÚ¡°15ÏîÏà¹ØÊýÁС±{an}£¬{bn}
£¨¢ó£©¶ÔÓÚÈ·¶¨µÄn£¬ÈÎȡһ¶Ô¡°nÏîÏà¹ØÊýÁС±{an}£¬{bn}£¬
Áîck=2n+1-bk£¬dk=2n+1-ak£¨k=1£¬2£¬¡£¬n£©£¬
ÏÈÖ¤{cn}£¬{dn}Ò²±ØÎª¡°nÏîÏà¹ØÊýÁС±£®
ÒòΪck-dk=£¨2n+1-bk£©-£¨2n+1-ak£©=ak-bk=k£¨k=1£¬2£¬¡£¬n£©£¬
ÓÖÒòΪ{a1£¬a2£¬¡£¬an£¬b1£¬b2£¬¡£¬bn}={1£¬2£¬3£¬4£¬¡£¬2n}£¬ºÜÏÔÈ»ÓÐ{£¨2n+1£©-a1£¬£¨2n+1£©-a2£¬¡£¬£¨2n+1£©-an£¬£¨2n+1£©-b1£¬£¨2n+1£©-b2£¬¡£¬£¨2n+1£©-bn}={1£¬2£¬3£¬¡£¬2n}£¬
ËùÒÔ{cn}£¬{dn}Ò²±ØÎª¡°nÏîÏà¹ØÊýÁС±£®
ÔÙÖ¤ÊýÁÐ{cn}Óë{an}ÊDz»Í¬µÄÊýÁУ®
¼ÙÉè{cn}Óë{an}Ïàͬ£¬Ôò{cn}µÄµÚ¶þÏîc2=2n+1-b2=a2£¬ÓÖa2-b2=2£¬Ôò2b2=2n-1£¬¼´b2=
| 2n-1 |
| 2 |
´Ó¶ø£¬·ûºÏÌõ¼þµÄ¡°nÏîÏà¹ØÊýÁС±ÓÐżÊý¶Ô£®
µãÆÀ£º±¾Ì⿼²éÁËÊýÁеÄÓ¦Ó㬿¼²é·´Ö¤·¨Ö¤Ã÷ÎÊÌâµÄ²½Ö裬×ÛºÏÐÔÇ¿£¬ÔÚÖ¤Ã÷£¨III£©Ê±£¬¹¹ÔìÊýÁÐ{Cn}£¬{dn}£¬Ö¤Ã÷{Cn}£¬{dn}ҲΪ¡°nÏîÏà¹ØÊýÁС±Êǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿