题目内容
等差数列{an}中,a1=3,a3=7,数列{bn}满足bn=
(n∈N*),Sn是数列{bn}的前n项和,则S10=
.
| 1 |
| an•an+1 |
| 10 |
| 69 |
| 10 |
| 69 |
分析:设等差数列{an}的公差为d,由于a1=3,a3=7,利用等差数列的通项公式可得d,再利用“裂项求和”即可得出.
解答:解:设等差数列{an}的公差为d,∵a1=3,a3=7,∴7=3+2d,解得d=2.
∴an=3+(n-1)×2=2n+1.
∴bn=
=
=
(
-
).
∴Sn=
[(
-
)+(
-
)+…+(
-
)]
=
(
-
)
=
.
∴S10=
.
故答案为
.
∴an=3+(n-1)×2=2n+1.
∴bn=
| 1 |
| an•an+1 |
| 1 |
| (2n+1)(2n+3) |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
∴Sn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2n+3 |
=
| n |
| 3(2n+3) |
∴S10=
| 10 |
| 69 |
故答案为
| 10 |
| 69 |
点评:本题考查了等差数列的通项公式、“裂项求和”等基础知识与基本技能方法,属于基础题.
练习册系列答案
相关题目