ÌâÄ¿ÄÚÈÝ

£¨1£©ÒÑÖªÊýÁÐ{an}µÄͨÏʽ£ºan=
2•3n+2
3n-1
  (n¡ÊN)
£¬ÊÔÇó{an}×î´óÏîµÄÖµ£»
£¨2£©¼Çbn=
an+p
an-2
£¬ÇÒÂú×㣨1£©£¬Èô{ (bn)
1
3
 }
³ÉµÈ±ÈÊýÁУ¬ÇópµÄÖµ£»
£¨3£©£¨Àí£©Èç¹ûCn+1=
Cn+p
Cn+1
£¬ C1£¾-1 £¬C1¡Ù
2
£¬ÇÒpÊÇÂú×㣨2£©µÄÕý³£Êý£¬ÊÔÖ¤£º¶ÔÓÚÈÎÒâ
×ÔÈ»Êýn£¬»òÕß¶¼Âú×ãC2n-1£¾
2
 £¬ C2n£¼
2
£»»òÕß¶¼Âú×ãC2n-1£¼
2
 £¬ C2n£¾
2
£®
£¨ÎÄ£©Èô{bn}ÊÇÂú×㣨2£©µÄÊýÁУ¬ÇÒ{ (bn)
1
3
 }
³ÉµÈ±ÈÊýÁУ¬ÊÔÇóÂú×ã²»µÈʽ£º-b1+b2-b3+¡­+£¨-1£©n•bn¡Ý2004µÄ×ÔÈ»ÊýnµÄ×îСֵ£®
£¨1£©an=
2 (3n-1)+4
3n-1
=2+
4
3n-1
£¬
¡àan-2=
4
3n-1
¡Ü
4
31-1
=2
£¬Ôòan¡Ü4£®
¼´{an}µÄ×î´óÏîµÄֵΪ4£®
£¨2£©Óûʹ{ (bn)
1
3
 }
³ÉµÈ±ÈÊýÁУ¬Ö»Ðè{bn}³ÉµÈ±ÈÊýÁУ®
¡ßbn=
an+p
an-2
=
2+p
4
3n+
2-p
4
£¬¡àÖ»Ðè
2+p
4
=0
»ò
2-p
4
=0
¼´¿É£®½âµÃp=2»òp=-2£®
£¨3£©£¨Àí£©p=2£¬Cn+1=
Cn+2
Cn+1
=1+
1
Cn+1
£¬
¡ßC1£¾-1£¬¡àCn£¾-1£®ÓÖC1¡Ù
2
£¬
¡àC2¡Ù
2
 £¬ ¡­ £¬ Cn¡Ù
2
£®
¡ß(C2n-
2
) (C2n-1-
2
)=
(1-
2
) ( C2n-1-
2
)
C2n-1+1
£¼0
£¬
¡àC2n-1£¾
2
 £¬ C2n£¼
2
£»»òC2n-1£¼
2
 £¬ C2n£¾
2
£®
£¨ÎÄ£©¡ßp=-2²»ºÏÌâÒ⣬¡àp=2?bn=3n£¬
¾ÝÌâÒ⣬
-3 [ 1-(-3)n]
1-(-3)
¡Ý2004?(-3)n+1¡Ü-4019
£¬nmin=8£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø