题目内容
【题目】已知函数
.
(1)证明:
在
上单调递减,在
上单调递增;
(2)记函数
的最小值为
,求
的最大值.
【答案】(1)证明见解析;
(2)
的最大值为2.
【解析】
(1)由定义法,分别设
和
两种不同情况时,计算
的正负即可;
(2)分别计算
在
和
时的最小值,更小的那个即为函数
的最小值,再分不同情况时将
的函数解析式表示出,画图即可求出
的最大值.
(1)设
,
![]()
![]()
又∵
,
∴
.
当
时,
,
∴
.
当
时,
,
∴
.
即
在
上单调递减,在
上单调递增.
(2)由(1)得,
在
时的最小值为
.
由∵当
时,二次函数
的对称轴为
,
由题意可得,
时,
.
∴当a≥0时,
在(-∞,0]上递减,故在(-∞,0]上的最小值为
, f(x)在(0,+∞)上的最小值为f(1)=3-a;
∵
,
∴
.
当a<0时,f(x)在(-∞,0]上的最小值为f(a)=1,f(x)在(0,+∞)上的最小值为f(1)=3-a;
∵
,
∴
.
即
,
所以M(a)在(-∞,0)上为常数函数,在(0,1)上是增函数,在(1,+∞)上是减函数,作出M(a)的函数图象如图所示:
![]()
所以M(a)的最大值为2.
练习册系列答案
相关题目
【题目】某工厂的
,
,
三个不同车间生产同一产品的数量(单位:件)如下表所示.质检人员用分层抽样的方法从这些产品中共抽取6件样品进行检测:
车间 |
|
|
|
数量 | 50 | 150 | 100 |
(1)求这6件样品中来自
,
,
各车间产品的数量;
(2)若在这6件样品中随机抽取2件进行进一步检测,求这2件产品来自相同车间的概率.