题目内容

函数y=sinxcosx+
3
cos2x-
3
的图象的一个对称中心是(  )
A、(
3
,-
3
2
)
B、(
6
,-
3
2
)
C、(-
3
3
2
)
D、(
π
3
,-
3
)
分析:先根据二倍角公式将函数进行化简为y=sin(2x+
π
3
)-
3
2
,然后代入检验即可.
解答:解:∵y=sinxcosx+
3
cos2x-
3
=
1
2
sin2x+
3
2
cos2x-
3
2

=sin(2x+
π
3
)-
3
2

故原函数的对称中心的纵坐标一定是-
3
2
故排除CD
将x=
3
代入sin(2x+
π
3
)不等于0,排除A.
故选B.
点评:本题主要考查三角函数的二倍角公式和对称中心.这种题型是每年高考中必考题目,做题第一步先将原函数化简再进行求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网