题目内容
(2013•山东)设△ABC的内角A,B,C所对边分别为a,b,c,且a+c=6,b=2,cosB=
.
(1)求a,c的值;
(2)求sin(A-B)的值.
| 7 | 9 |
(1)求a,c的值;
(2)求sin(A-B)的值.
分析:(1)利用余弦定理列出关于新,将b与cosB的值代入,利用完全平方公式变形,求出acb的值,与a+c的值联立即可求出a与c的值即可;
(2)先由cosB的值,利用同角三角函数间的基本关系求出sinB的值,再由a,b及sinB的值,利用正弦定理求出sinA的值,进而求出cosA的值,所求式子利用两角和与差的正弦函数公式化简后,将各自的值代入计算即可求出值.
(2)先由cosB的值,利用同角三角函数间的基本关系求出sinB的值,再由a,b及sinB的值,利用正弦定理求出sinA的值,进而求出cosA的值,所求式子利用两角和与差的正弦函数公式化简后,将各自的值代入计算即可求出值.
解答:解:(1)∵a+c=6①,b=2,cosB=
,
∴由余弦定理得:b2=a2+c2-2accosB=(a+c)2-2ac-
ac=36-
ac=4,
整理得:ac=9②,
联立①②解得:a=c=3;
(2)∵cosB=
,B为三角形的内角,
∴sinB=
=
,
∵b=2,a=3,sinB=
,
∴由正弦定理得:sinA=
=
=
,
∵a=c,即A=C,∴A为锐角,
∴cosA=
=
,
则sin(A-B)=sinAcosB-cosAsinB=
×
-
×
=
.
| 7 |
| 9 |
∴由余弦定理得:b2=a2+c2-2accosB=(a+c)2-2ac-
| 14 |
| 9 |
| 32 |
| 9 |
整理得:ac=9②,
联立①②解得:a=c=3;
(2)∵cosB=
| 7 |
| 9 |
∴sinB=
1-(
|
4
| ||
| 9 |
∵b=2,a=3,sinB=
4
| ||
| 9 |
∴由正弦定理得:sinA=
| asinB |
| b |
3×
| ||||
| 2 |
2
| ||
| 3 |
∵a=c,即A=C,∴A为锐角,
∴cosA=
| 1-sin2A |
| 1 |
| 3 |
则sin(A-B)=sinAcosB-cosAsinB=
2
| ||
| 3 |
| 7 |
| 9 |
| 1 |
| 3 |
4
| ||
| 9 |
10
| ||
| 27 |
点评:此题考查了正弦、余弦定理,两角和与差的正弦函数公式,以及同角三角函数间的基本关系,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关题目