题目内容
已知f(x)=a1x+a2x2+a3x3+…+anxn,n为正偶数,且a1,a2,a3,…,an组成等差数列,又f(1)=n2,f(-1)=n.试比较f(
)与3的大小.
解:∵f(1)=a1+a2++an=n2.
依题设,有
=n2,故a1+an=2n,
即2a1+(n-1)d=2n.
又f(-1)=-a1+a2-a3+a4-a5+-an-1+an=n,
∴
•d=n,有d=2.进而有2a1+(n-1)2=2n,解出a1=1.
于是f(1)=1+3+5+7++(2n-1).
f(x)=x+3x2+5x3+7x4++(2n-1)xn.
∴f(
)=
+3(
)2+5(
)3+7(
)4++(2n-1)(
)n.①
①两边同乘以
,得
f(
)=(
)2+3(
)3+5(
)4++(2n-3)(
)n+(2n-1)(
)n+1.②
①-②,得
f(
)=
+2(
)2+2(
)3++2(
)n-(2n-1)(
)n+1,
即
f(
)=
+
+(
)2++(
)n-1-(2n-1)(
)n+1.
∴f(
)=1+1+
+
++
-(2n-1)
=1+
-(2n-1)
=1+2-
-(2n-1)
<3.
∴f(
)<3.
分析:由题设条件可知2a1+(n-1)d=2n.再由f(-1)=-a1+a2-a3+a4-a5+-an-1+an=n可解出a1=1.所以f(
)=
+3(
)2+5(
)3+7(
)4+…+(2n-1)(
)n,再用错位相减法求解即可.
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.
依题设,有
即2a1+(n-1)d=2n.
又f(-1)=-a1+a2-a3+a4-a5+-an-1+an=n,
∴
于是f(1)=1+3+5+7++(2n-1).
f(x)=x+3x2+5x3+7x4++(2n-1)xn.
∴f(
①两边同乘以
①-②,得
即
∴f(
∴f(
分析:由题设条件可知2a1+(n-1)d=2n.再由f(-1)=-a1+a2-a3+a4-a5+-an-1+an=n可解出a1=1.所以f(
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目