题目内容
20.已知f(x)=$\left\{\begin{array}{l}{-x,x>0}\\{{x}^{2},x<0}\end{array}\right.$,则f[f(x)]=( )| A. | $\left\{\begin{array}{l}{{x}^{2},x>0}\\{-{x}^{2},x<0}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{-{x}^{2},x>0}\\{{x}^{2},x<0}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{-x,x>0}\\{{x}^{2},x<0}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{-x,x<0}\\{{x}^{2},x>0}\end{array}\right.$ |
分析 直接利用分段函数化简求解即可.
解答 解:f(x)=$\left\{\begin{array}{l}{-x,x>0}\\{{x}^{2},x<0}\end{array}\right.$,
则x>0时,f[f(x)]=f(-x)=(-x)2=x2.
x<0时,f[f(x)]=f(x2)=-x2.
∴f[f(x)]=$\left\{\begin{array}{l}-{x}^{2},x>0\\{x}^{2},x<0\end{array}\right.$.
故选:B.
点评 本题考查分段函数的应用,函数解析式的求法,考查计算能力.
练习册系列答案
相关题目