题目内容

20.已知f(x)=$\left\{\begin{array}{l}{-x,x>0}\\{{x}^{2},x<0}\end{array}\right.$,则f[f(x)]=(  )
A.$\left\{\begin{array}{l}{{x}^{2},x>0}\\{-{x}^{2},x<0}\end{array}\right.$B.$\left\{\begin{array}{l}{-{x}^{2},x>0}\\{{x}^{2},x<0}\end{array}\right.$
C.$\left\{\begin{array}{l}{-x,x>0}\\{{x}^{2},x<0}\end{array}\right.$D.$\left\{\begin{array}{l}{-x,x<0}\\{{x}^{2},x>0}\end{array}\right.$

分析 直接利用分段函数化简求解即可.

解答 解:f(x)=$\left\{\begin{array}{l}{-x,x>0}\\{{x}^{2},x<0}\end{array}\right.$,
则x>0时,f[f(x)]=f(-x)=(-x)2=x2
x<0时,f[f(x)]=f(x2)=-x2
∴f[f(x)]=$\left\{\begin{array}{l}-{x}^{2},x>0\\{x}^{2},x<0\end{array}\right.$.
故选:B.

点评 本题考查分段函数的应用,函数解析式的求法,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网