题目内容

设函数f(x)=(ax2-bx)ex的图象与直线ex+y=0相切于点A,且点A的横坐标为1.
(1)求a,b的值;
(2)求函数f(x)的单调区间,并指出在每个区间上的增减性.
(1)f′(x)=(2ax-b)ex+(ax2-bx)ex=[ax2+(2a-b)x-b]ex(2分)
由于f(x)的图象与直线ex+y=0相切于点A,点A的横坐标为1,则A(1,-e)
所以
f(1)=-e
f′(1)=-e
(4分)
(a-b)e=-e
(3a-2b)e=-e
解得a=1,b=2.(7分)

(2)由a=1,b=2,得f(x)=(x2-2x)ex,定义域为(-∞,+∞),
f′(x)=(x2-2)ex=(x-
2
)(x+
2
)ex.
(9分)
令f'(x)>0,解得x<-
2
x>
2

令f'(x)<0,解得-
2
<x<
2

故函数f(x)在区间(-∞,-
2
),(
2
,+∞)
上分别单调递增,
在区间(-
2
2
)
上单调递减.(13分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网