题目内容
△ABC的三边a,b,c满足等式acosA+bcosB=ccosC,则此三角形必是( )
| A.以a为斜边的直角三角形 |
| B.直角三角形 |
| C.等边三角形 |
| D.其它三角形 |
由正弦定理可知a=2rsinA
b=2rsinB
c=2rsinC
代入acosA+bcosB=ccosC,得sinAcosA+sinBcosB=sinCcosC
sin2A+sin2B=2sinCcosC
即2sin(A+B)cos(A-B)=2sinCcosC
sin(A+B)=sin(180-C)=sinC
∴cos(A-B)=cosC
∴A-B=C或B-A=C
所以A=B+C或B=A+C
∴A=90°或B=90°.
所以是直角三角形 故选B.
b=2rsinB
c=2rsinC
代入acosA+bcosB=ccosC,得sinAcosA+sinBcosB=sinCcosC
sin2A+sin2B=2sinCcosC
即2sin(A+B)cos(A-B)=2sinCcosC
sin(A+B)=sin(180-C)=sinC
∴cos(A-B)=cosC
∴A-B=C或B-A=C
所以A=B+C或B=A+C
∴A=90°或B=90°.
所以是直角三角形 故选B.
练习册系列答案
相关题目