题目内容
【题目】每年9月第三个公休日是全国科普日.某校为迎接2019年全国科普日,组织了科普知识竞答活动,要求每位参赛选手从4道“生态环保题”和2道“智慧生活题”中任选3道作答(每道题被选中的概率相等),设随机变量ξ表示某选手所选3道题中“智慧生活题”的个数.
(Ⅰ)求该选手恰好选中一道“智慧生活题”的概率;
(Ⅱ)求随机变量ξ的分布列及数学期望.
【答案】(Ⅰ)
(Ⅱ)分布列见解析,1.
【解析】
(Ⅰ)设该选手恰好选中一道“智慧生活题”为事件
,利用古典概型求解即可.
(Ⅱ)由题意可知
;求出概率可得到
的分布列,再由期望公式即可求得期望.
(Ⅰ)根据古典概型概率求法,可设该选手恰好选中一道“智慧生活题”为事件
,则选中2道“生态环保题”,
则
,
(Ⅱ)由题意可知
;
则
,
,
,
所以
的分布列为:
| 0 | 1 | 2 |
|
|
|
|
故
的期望
.
【题目】某公司为了确定下一年度投入某种产品的宣传费用,需了解年宣传费
(单位:万元)对年销量
(单位:吨)和年利润(单位:万元)的影响对近6年宣传费
和年销量
的数据做了初步统计,得到如下数据:
年份 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年宣传费 | 38 | 48 | 58 | 68 | 78 | 88 |
年销售量 | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
经电脑模拟,发现年宣传费
(万元)与年销售量
(吨)之间近似满足关系式
,两边取对数,即
,令
,即
对上述数据作了初步处理,得到相关的值如下表:
|
|
|
|
75.3 | 24.6 | 18.3 | 101.4 |
(1)从表中所给出的6年年销售量数据中任选2年做年销售量的调研,求所选数据中至多有一年年销售量低于21吨的概率.
(2)根据所给数据,求
关于
的回归方程;
(3)若生产该产品的固定成本为200(万元),且每生产1(吨)产品的生产成本为20(万元)(总成本=固定成本+生产成本+年宣传费),销售收入为
(万元),假定该产品产销平衡(即生产的产品都能卖掉),2019年该公司计划投入108万元宣传费,你认为该决策合理吗?请说明理由.(其中
为自然对数的底数,
)
附:对于一组数据
,其回归直线
中的斜率和截距的最小二乘估计分别为![]()
【题目】
市某机构为了调查该市市民对我国申办
年足球世界杯的态度,随机选取了
位市民进行调查,调查结果统计如下:
支持 | 不支持 | 合计 | |
男性市民 |
| ||
女性市民 |
| ||
合计 |
|
|
(1)根据已知数据,把表格数据填写完整;
(2)利用(1)完成的表格数据回答下列问题:
(i)能否在犯错误的概率不超过
的前提下认为支持申办足球世界杯与性别有关;
(ii)已知在被调查的支持申办足球世界杯的男性市民中有
位退休老人,其中
位是教师,现从这
位退休老人中随机抽取
人,求至多有
位老师的概率.
附:
,其中
.
|
|
|
|
|
|
|
|
|
|
|
|
【题目】为了解中学生对交通安全知识的掌握情况,从农村中学和城镇中学各选取100名同学进行交通安全知识竞赛.下图1和图2分别是对农村中学和城镇中学参加竞赛的学生成绩按
,
,
,
分组,得到的频率分布直方图.
![]()
(Ⅰ)分别估算参加这次知识竞赛的农村中学和城镇中学的平均成绩;
(Ⅱ)完成下面
列联表,并回答是否有
的把握认为“农村中学和城镇中学的学生对交通安全知识的掌握情况有显著差异”?
成绩小于60分人数 | 成绩不小于60分人数 | 合计 | |
农村中学 | |||
城镇中学 | |||
合计 |
附:![]()
临界值表:
| 0.10 | 0.05 | 0.010 |
| 2.706 | 3.841 | 6.635 |