题目内容
(2012•茂名二模)已知0<α<
,cos(α+
)=
,则cosα=
+
+
.
| π |
| 2 |
| π |
| 6 |
| 3 |
| 5 |
3
| ||
| 10 |
| 2 |
| 5 |
3
| ||
| 10 |
| 2 |
| 5 |
分析:由同角三角函数的基本关系求得 sin(α+
)=
,再由cosα=cos[(α+
)-
]利用两角差的余弦公式求出结果.
| π |
| 6 |
| 4 |
| 5 |
| π |
| 6 |
| π |
| 6 |
解答:解:∵已知0<α<
,cos(α+
)=
,
∴sin(α+
)=
,
∴cosα=cos[(α+
)-
]=cos(α+
)cos
+sinα+
)sin
=
×
+
×
=
=
+
,
故答案为
+
.
| π |
| 2 |
| π |
| 6 |
| 3 |
| 5 |
∴sin(α+
| π |
| 6 |
| 4 |
| 5 |
∴cosα=cos[(α+
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
=
| 3 |
| 5 |
| ||
| 2 |
| 4 |
| 5 |
| 1 |
| 2 |
3
| ||
| 10 |
3
| ||
| 10 |
| 2 |
| 5 |
故答案为
3
| ||
| 10 |
| 2 |
| 5 |
点评:本题主要考查同角三角函数的基本关系,两角和差的余弦公式的应用,属于中档题.
练习册系列答案
相关题目