题目内容
若函数f(x)=kax-a-x(a>0且a≠1)在(-∞,+∞)上既是奇函数又是增函数,则函数g(x)=loga(x+k)的图象是
A.
B.
C.
D.
已知平面向量a=(,-1),b=(,).
(1)证明a⊥b;
(2)若存在不同时为零的实数k、t,使得x=a+(t2-3)b,y=-ka+tb,且x⊥y,求函数关系式k=f(t).
平面向量a=(,-1),b=(,),若存在不同时为0的实数k和t,使得x=a+(t2-3)b,y=-ka+tb,且x⊥y,试确定函数k=f(t)的单调区间.
已知a=(,-1),b=.
(1)求证:a⊥b;
(2)若存在不同时为0的实数k和t,使x=a+(t-3)b,y=-ka+tb,且x⊥y,试求函数关系式k=f(t);
(3)求函数k=f(t)的最小值.
已知平面向量a=(,-1),b=(, ).
(1) 若存在实数k和t,便得x=a+(t2-3)b, y=-ka+tb,且x⊥y,试求函数的关系式k=f(t);
(2) 根据(1)的结论,确定k=f(t)的单调区间。
分析:利用向量知识转化为函数问题求解.
设函数f(x)=ka x- a-x(a>0且a≠1)是定义域为R的奇函数.
(1)求k值;
(2)若f(1)>0,试判断函数单调性并求不等式f(x2+2x)+f(x-4)>0的解集;
(3)若f(1)=,且g(x)=a 2x+a - 2x-2m f(x) 在[1,+∞)上的最小值为-2,求m的值.