题目内容

(2012•佛山二模)据市场调查,某种商品一年中12个月的价格与月份的关系可以近似地用函数f(x)=Asin(ωx+φ)+7(A>0,ω>0,|φ|<
π
2
)来表示(x为月份).已知3月份达到最高价9千元,7月份价格最低为5千元,则国庆期间的价格约为(  )
分析:根据3月份达到最高价9千元,7月份价格最低为5千元,得函数的振幅A=2且周期T=8.再根据函数的最大值为f(3)=9,算出φ=-
π
4
,从而得出函数表达式为f(x)=2sin(
π
4
x-
π
4
)+7,求出f(10)的近似值,即得国庆期间的价格.
解答:解:∵3月份达到最高价9千元,7月份价格最低为5千元,
∴2A=9-5=4,得A=2.函数的周期T=2(7-3)=8
因此,ω=
T
=
π
4
,得函数表达式为f(x)=2sin(
π
4
x+φ)+7
∵f(3)=2sin(
4
+φ)+7=9,函数最大值为9
4
+φ=
π
2
+2kπ,得φ=-
π
4
+2kπ,(k∈Z)
∵|φ|<
π
2
,∴取k=0,得φ=-
π
4

由此可得函数表达式为f(x)=2sin(
π
4
x-
π
4
)+7
∴f(10)=2sin(
π
4
×10-
π
4
)+7=
2
+7≈8.4千元
即国庆期间的价格约为8.4千元
故选D
点评:本题给出类似于三角函数的模型的实际应用问题,求一个近似值,着重考查了正弦函数的图象与性质的知识,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网