ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf£¨x£©=xk+b£¨³£Êýk£¬b¡ÊR£©µÄͼÏó¹ýµã£¨4£¬2£©¡¢£¨16£¬4£©Á½µã£®£¨1£©Çóf£¨x£©µÄ½âÎöʽ£»
£¨2£©Èôº¯Êýg£¨x£©µÄͼÏóÓ뺯Êýf£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßy=x¶Ô³Æ£¬Èô²»µÈʽg£¨x£©+g£¨x-2£©£¾2ax+2ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨3£©ÈôP1£¬P2£¬P3£¬¡£¬Pn£¬¡ÊǺ¯Êýf£¨x£©Í¼ÏóÉϵĵãÁУ¬Q1£¬Q2£¬Q3£¬¡£¬Qn£¬¡ÊÇxÕý°ëÖáÉϵĵãÁУ¬OÎª×ø±êԵ㣬¡÷OQ1P1£¬¡÷Q1Q2P2£¬¡£¬¡÷Qn-1QnPn£¬¡ÊÇһϵÁÐÕýÈý½ÇÐΣ¬¼ÇËüÃǵı߳¤ÊÇa1£¬a2£¬a3£¬¡£¬an£¬¡£¬Ì½ÇóÊýÁÐanµÄͨÏʽ£¬²¢ËµÃ÷ÀíÓÉ£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©½«£¨4£¬2£©¡¢£¨16£¬4£©Á½µã×ø±ê´úÈ뺯Êýf£¨x£©=xk+bÖУ¬¼´¿ÉÇó³ök¡¢bµÄÖµ£¬½ø¶øÇóµÃº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©¸ù¾ÝÇ°ÃæÇóµÃµÄf£¨x£©µÄ½âÎöʽºÍÌâÖÐÒÑÖªÌõ¼þ¿ÉÖªº¯Êýg£¨x£©µÄ½âÎöʽ£¬Áîg£¨x£©+g£¨x-2£©£¼2ax+2£¬±ã¿ÉÇó³öaµÄȡֵ·¶Î§£»
£¨3£©¸ù¾ÝÇ°ÃæÇóµÃµÄº¯Êý½áºÏÌâÖÐÒÑÖªÌõ¼þ±ã¿ÉÇó³öanÓëan+1µÄ¹ØÏµ£¬±ã¿ÉÇóµÃÊýÁÐanµÄͨÏʽ£®
½â´ð£º½â£º£¨1£©


£¨2£©g£¨x£©=x2£¨x¡Ý0£©
g£¨x£©+g£¨x-2£©£¾2ax+2

ÔÎÊÌâµÈ¼ÛÓÚ
ÔÚx¡Ê[2£¬+¡Þ£©ºã³ÉÁ¢£¬
ÀûÓú¯Êý
ÔÚÇø¼ä[2£¬+¡Þ£©ÉÏΪÔöº¯Êý£¬
¿ÉµÃ
£»
£¨3£©ÓÉ
£¬
ÓÉ
£¬
½«x´úÈë
£¬
¡à
ÇÒ
£¬
ÓÖ
£¬
Á½Ê½Ïà¼õ¿ÉµÃ£º
⇒
£¬
ÓÖ£¬ÒòΪan£¾0£¬ËùÒÔ
£¬
´Ó¶øanÊÇÒÔ
ΪÊ×Ï
Ϊ¹«²îµÄµÈ²îÊýÁУ¬¼´
£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˺¯Êý½âÎöʽµÄÇó·¨ÒÔ¼°ÊýÁÐÓ뺯ÊýµÄ×ۺϣ¬¿¼²éÁËѧÉúµÄ¼ÆËãÄÜÁ¦ºÍ¶ÔÊýÁеÄ×ÛºÏÕÆÎÕ£¬½âÌâʱעÒâÕûÌå˼ÏëºÍת»¯Ë¼ÏëµÄÔËÓã¬ÊôÓÚÖеµÌ⣮
£¨2£©¸ù¾ÝÇ°ÃæÇóµÃµÄf£¨x£©µÄ½âÎöʽºÍÌâÖÐÒÑÖªÌõ¼þ¿ÉÖªº¯Êýg£¨x£©µÄ½âÎöʽ£¬Áîg£¨x£©+g£¨x-2£©£¼2ax+2£¬±ã¿ÉÇó³öaµÄȡֵ·¶Î§£»
£¨3£©¸ù¾ÝÇ°ÃæÇóµÃµÄº¯Êý½áºÏÌâÖÐÒÑÖªÌõ¼þ±ã¿ÉÇó³öanÓëan+1µÄ¹ØÏµ£¬±ã¿ÉÇóµÃÊýÁÐanµÄͨÏʽ£®
½â´ð£º½â£º£¨1£©
£¨2£©g£¨x£©=x2£¨x¡Ý0£©
g£¨x£©+g£¨x-2£©£¾2ax+2
ÔÎÊÌâµÈ¼ÛÓÚ
ÀûÓú¯Êý
¿ÉµÃ
£¨3£©ÓÉ
ÓÉ
½«x´úÈë
¡à
ÓÖ
Á½Ê½Ïà¼õ¿ÉµÃ£º
ÓÖ£¬ÒòΪan£¾0£¬ËùÒÔ
´Ó¶øanÊÇÒÔ
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˺¯Êý½âÎöʽµÄÇó·¨ÒÔ¼°ÊýÁÐÓ뺯ÊýµÄ×ۺϣ¬¿¼²éÁËѧÉúµÄ¼ÆËãÄÜÁ¦ºÍ¶ÔÊýÁеÄ×ÛºÏÕÆÎÕ£¬½âÌâʱעÒâÕûÌå˼ÏëºÍת»¯Ë¼ÏëµÄÔËÓã¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
| ¦Ð |
| 2 |
A¡¢f(x)=2sin(¦Ðx+
| ||
B¡¢f(x)=2sin(2¦Ðx+
| ||
C¡¢f(x)=2sin(¦Ðx+
| ||
D¡¢f(x)=2sin(2¦Ðx+
|