题目内容
12、已知A={a,b,c},B={0,1,2},则满足条件f(a)+f(b)>f(c)的映射f:A→B有
17
个.分析:由题设知f(a)=0,1,2;f(b)=0,1,2;f(c)=0,1,2.当f(c)=0时,满足条件的映射有8个;当f(c)=1时,满足条件的映射有6个;当f(c)=2时,满足条件的映射有3个.
解答:解:f(a)=0,1,2;f(b)=0,1,2;f(c)=0,1,2.
当f(c)=0时,满足条件的映射有8个:f(c)=0,f(a)=0,f(b)=1;f(c)=0,f(a)=0,f(b)=2;f(c)=0,f(a)=1,f(b)=0;f(c)=0,f(a)=1,f(b)=1;f(c)=0,f(a)=1,f(b)=2;f(c)=0,f(a)=2,f(b)=0;f(c)=0,f(a)=2,f(b)=1;f(c)=0,f(a)=2,f(b)=2.
当f(c)=1时,满足条件的映射有6个:f(c)=1,f(a)=f(b)=1;f(c)=1,f(a)=2,f(b)=1;f(c)=1,f(a)=1,f(b)=2;f(c)=1,f(a)=2,f(b)=2;f(c)=1,f(a)=2,f(b)=0;f(c)=1,f(a)=0,f(b)=2.
当f(c)=2时,满足条件的映射有3个:f(c)=2,f(a)=1,f(b)=2;f(c)=2,f(a)=2,f(b)=1;f(c)=2,f(a)=2,f(b)=2.
综上所述,满足条件f(a)+f(b)>f(c)的映射f:A→B有17个.
故答案为:17.
当f(c)=0时,满足条件的映射有8个:f(c)=0,f(a)=0,f(b)=1;f(c)=0,f(a)=0,f(b)=2;f(c)=0,f(a)=1,f(b)=0;f(c)=0,f(a)=1,f(b)=1;f(c)=0,f(a)=1,f(b)=2;f(c)=0,f(a)=2,f(b)=0;f(c)=0,f(a)=2,f(b)=1;f(c)=0,f(a)=2,f(b)=2.
当f(c)=1时,满足条件的映射有6个:f(c)=1,f(a)=f(b)=1;f(c)=1,f(a)=2,f(b)=1;f(c)=1,f(a)=1,f(b)=2;f(c)=1,f(a)=2,f(b)=2;f(c)=1,f(a)=2,f(b)=0;f(c)=1,f(a)=0,f(b)=2.
当f(c)=2时,满足条件的映射有3个:f(c)=2,f(a)=1,f(b)=2;f(c)=2,f(a)=2,f(b)=1;f(c)=2,f(a)=2,f(b)=2.
综上所述,满足条件f(a)+f(b)>f(c)的映射f:A→B有17个.
故答案为:17.
点评:本题考查映射的概念,解题时要注意分类讨论思想的合理运用.
练习册系列答案
相关题目
已知a=log2
,b=(
)
,c=lg3,则( )
| 4 |
| 5 |
| 1 |
| 2 |
| 4 |
| 5 |
| A、a<b<c |
| B、c<a<b |
| C、a<c<b |
| D、b<c<a |
选择题:
(1)
已知[
]|
(A)A 、B、D三点共线 |
(B)A 、B、C三点共线 |
|
(C)B 、C、D三点共线 |
(D)A 、C、D三点共线 |
(2)
已知正方形ABCD的边长为1,[
]|
(A)0 |
(B)3 |
(C) |
(D) |
(3)
已知[
]|
(A)a +b+c+d=0 |
(B)a -b+c-d=0 |
|
(C)a +b-c-d=0 |
(D)a -b-c+d=0 |
(4)
已知D、E、F分别是△ABC的边BC、CA、AB的中点,且中正确的等式的个数为
[
]|
(A)1 |
(B)2 |
(C)3 |
(D)4 |
(5)
若[
]|
(A)30° |
(B)60° |
(C)120° |
(D)150° |
(6)
若向量a、b、c两两所成的角相等,且[
]|
(A)2 |
(B)5 |
(C)2 或5 |
(D) |
(7)
等边三角形ABC的边长为1,[
]|
(A)3 |
(B) -3 |
(C) |
(D) |