题目内容

10.已知sinα,sinβ是方程8x2-6kx+2k+1=0的两根,且α.β终边互相垂直,则k=-$\frac{10}{9}$.

分析 sinα,sinβ是方程8x2-6kx+2k+1=0的两根,可得:sinα+sinβ=$\frac{3k}{4}$,sinα•sinβ=$\frac{2k+1}{8}$.又α.β终边互相垂直,不妨设$β=α+2kπ+\frac{π}{2}$.可得sinβ=cosα.于是sinα+cosα=$\frac{3k}{4}$,sinα•cosα=$\frac{2k+1}{8}$.利用同角三角函数基本关系式即可得出.

解答 解:∵sinα,sinβ是方程8x2-6kx+2k+1=0的两根,
∴sinα+sinβ=$\frac{3k}{4}$,sinα•sinβ=$\frac{2k+1}{8}$.
又α.β终边互相垂直,
不妨设$β=α+2kπ+\frac{π}{2}$.
∴sinβ=cosα.
∴sinα+cosα=$\frac{3k}{4}$≤$\sqrt{2}$,sinα•cosα=$\frac{2k+1}{8}$.
∴$\frac{9{k}^{2}}{16}$=1+2×$\frac{2k+1}{8}$,
化为9k2-8k-20=0,
则k=2(舍去)或k=-$\frac{10}{9}$.
故答案为:-$\frac{10}{9}$.

点评 本题考查了终边相同的角、同角三角函数基本关系式、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网