题目内容
已知1是a2,b2的等比中项,又是| 1 |
| a |
| 1 |
| b |
| a+b |
| a2+b2 |
分析:由题设条件可知,a2b2=1,
+
=2,由此能够导出,
=
;可得ab=±1.又由
=
,分别将ab=1与ab=-1代入可得答案.
| 1 |
| a |
| 1 |
| b |
| a+b |
| a2+b2 |
| 2ab |
| 4-2ab |
| a+b |
| a2+b2 |
| 2ab |
| 4-2ab |
解答:解:由题意知a2b2=1,
+
=2,∴
=2,∴
=4,
∴a2+b2=4-2ab,a+b=2ab,∴
=
.
由a2b2=1知ab=±1.
当ab=1时,
=
=
=1.
当ab=-1时,
=
=
=-
.
故
的值是1或-
.
答案:1或-
.
| 1 |
| a |
| 1 |
| b |
| a+b |
| ab |
| a2+b2+2ab |
| a2b2 |
∴a2+b2=4-2ab,a+b=2ab,∴
| a+b |
| a2+b2 |
| 2ab |
| 4-2ab |
由a2b2=1知ab=±1.
当ab=1时,
| a+b |
| a2+b2 |
| 2ab |
| 4-2ab |
| 2 |
| 4-2 |
当ab=-1时,
| a+b |
| a2+b2 |
| 2ab |
| 4-2ab |
| -2 |
| 4+2 |
| 1 |
| 3 |
故
| a+b |
| a2+b2 |
| 1 |
| 3 |
答案:1或-
| 1 |
| 3 |
点评:本题考查数列的性质及其应用,解题时要熟练掌握公式的灵活运用.
练习册系列答案
相关题目
已知1是a2与b2的等比中项,又是
与
的等差中项,则
的值是( )
| 1 |
| a |
| 1 |
| b |
| a+b |
| a2+b2 |
A、1或
| ||
B、1或-
| ||
C、1或
| ||
D、1或-
|