题目内容
选修4-4:坐标系与参数方程
在极坐标系中,曲线L:ρsin2θ=2cosθ,过点A(5,α)(α为锐角且tanα=
)作平行于θ=
(ρ∈R)的直线l,且l与曲线L分别交于B,C两点.
(Ⅰ)以极点为原点,极轴为x轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L和直线l的普通方程;
(Ⅱ)求|BC|的长.
在极坐标系中,曲线L:ρsin2θ=2cosθ,过点A(5,α)(α为锐角且tanα=
| 3 |
| 4 |
| π |
| 4 |
(Ⅰ)以极点为原点,极轴为x轴的正半轴,取与极坐标相同单位长度,建立平面直角坐标系,写出曲线L和直线l的普通方程;
(Ⅱ)求|BC|的长.
分析:(Ⅰ)先求的点A的直角坐标为(4,3),求得曲线L的普通方程为:y2=2x,由于直线l的斜率为1,且过点
A(4,3),由点斜式求得直线l的普通方程为y=x-1.
(Ⅱ)把曲线L的方程和直线l的方程联立方程组,化为一元二次方程,利用韦达定理求出x1+x24和x1•x2的值,再利用
弦长公式求得|BC|的值.
A(4,3),由点斜式求得直线l的普通方程为y=x-1.
(Ⅱ)把曲线L的方程和直线l的方程联立方程组,化为一元二次方程,利用韦达定理求出x1+x24和x1•x2的值,再利用
弦长公式求得|BC|的值.
解答:解:(Ⅰ)由题意得,点A的直角坐标为(4,3),
曲线L即 ρ2 sin2θ=2ρcosθ,它的普通方程为:y2=2x,
由于直线l的斜率为1,且过点A(4,3),故直线l的普通方程为:y-3=x-4,即y=x-1.
(Ⅱ)设B(x1,y1)、C(x2,y2),由
可得 x2-4x+1=0,
由韦达定理得x1+x2=4,x1•x2=1,
由弦长公式得|BC|=
|x1-x2|=2
.
曲线L即 ρ2 sin2θ=2ρcosθ,它的普通方程为:y2=2x,
由于直线l的斜率为1,且过点A(4,3),故直线l的普通方程为:y-3=x-4,即y=x-1.
(Ⅱ)设B(x1,y1)、C(x2,y2),由
|
由韦达定理得x1+x2=4,x1•x2=1,
由弦长公式得|BC|=
| 1+k2 |
| 6 |
点评:本题主要考查把极坐标方程化为直角坐标方程的方法,弦长公式的应用,属于基础题.
练习册系列答案
相关题目