题目内容

(2005•海淀区二模)解不等式:log
1
2
(
x+1
-x)<2
分析:原不等式可以化成
x+1
-x>0
x+1
-x>
1
4
,即
x+1
>x+
1
4
,等价于
x+
1
4
≥0
x+1≥0
x+1>(x+
1
4
)2
x+
1
4
<0
x+1≥0
.分别求得这两个不等式组的解集,再取并集,即得所求.
解答:解:原不等式可以化成:
x+1
-x>0
x+1
-x>
1
4
,即
x+1
>x+
1
4
.…(2分)
解上述不等式等,价于解不等式组
x+
1
4
≥0
x+1≥0
x+1>(x+
1
4
)2
x+
1
4
<0
x+1≥0
.…(5分)
x≥-
1
4
x2-
1
2
x-
15
16
<0
,或-1≤x<-
1
4
.…(8分)
解得:-1≤x<-
1
4
,或 -
1
4
≤x<
5
4
,…(11分)
综合可得 -1≤x<
5
4
,…(12分)
即原不等式的解集为{x|-1≤x<
5
4
}
点评:本题主要考查对数不等式、根式不等式的解法,体现了等价转化的数学思想,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网