题目内容
20.已知$f(x)=2sin({2x-\frac{π}{6}})$.则$f({\frac{5π}{24}})$=$\sqrt{2}$;若f(x)≥1,则满足条件的x的集合为{x|kπ+$\frac{π}{6}$≤x≤kπ+$\frac{π}{2}$,k∈Z}.分析 代值计算即可,根据正弦函数的图象和性质得到2kπ+$\frac{π}{6}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{5π}{6}$,k∈Z,化简即可.
解答 解:$f(x)=2sin({2x-\frac{π}{6}})$.
则$f({\frac{5π}{24}})$=2sin(2×$\frac{5π}{24}$-$\frac{π}{6}$)=2sin$\frac{π}{4}$=$\sqrt{2}$,
∵f(x)≥1,
∴2sin(2x-$\frac{π}{6}$)≥1,
∴sin(2x-$\frac{π}{6}$)≥$\frac{1}{2}$,
∴2kπ+$\frac{π}{6}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{5π}{6}$,k∈Z,
∴kπ+$\frac{π}{6}$≤x≤kπ+$\frac{π}{2}$,k∈Z,
∴满足条件的x的集合为{x|kπ+$\frac{π}{6}$≤x≤kπ+$\frac{π}{2}$,k∈Z}.
故答案为:$\sqrt{2}$,{x|kπ+$\frac{π}{6}$≤x≤kπ+$\frac{π}{2}$,k∈Z}.
点评 本题考查了三角函数值的求法和不等式的解法,掌握正弦函数的图象和性质是关键.
练习册系列答案
相关题目
8.若a>0,b>0,则“a+b>$\frac{1}{a}$+$\frac{1}{b}$”是“ab>1”的( )
| A. | 充要条件 | B. | 充分不必要条件 | ||
| C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
8.2012年初,甲?乙两外商在湖北各自兴办了一家大型独资企业.2015年初在经济指标对比时发现,这两家企业在2012年和2014年缴纳的地税均相同,其间每年缴纳的地税按各自的规律增长;企业甲年增长数相同,而企业乙年增长率相同.则2015年企业缴纳地税的情况是( )
| A. | 甲多 | B. | 乙多 | C. | 甲乙一样多 | D. | 不能确定 |
12.甲乙两人玩一种游戏,每次由甲、乙各出1到5根手指头,若和为偶数算甲赢,否则算乙赢.记甲赢的概率为p1,乙赢的概率为p2,则有( )
| A. | p1<p2 | B. | p1>p2 | C. | p1=p2 | D. | 不能确定 |
9.设函数f(x)=ln(1+|x|)-$\frac{1}{1+{x}^{2}}$,则使得f(x)>f(2x-1)成立的取值范围是( )
| A. | (-∞,$\frac{1}{3}$)∪(1,+∞) | B. | ($\frac{1}{3}$,1) | C. | ($-\frac{1}{3},\frac{1}{3}$) | D. | (-∞,-$\frac{1}{3}$,)$∪(\frac{1}{3},+∞)$ |
10.已知x∈{0,2,x2),则实数x的值为( )
| A. | 1 | B. | 2 | C. | 0或1或2 | D. | 1或2 |