题目内容
集合A={(x,y)|y=2x},B={(x,y)|y>0,x∈R}之间的关系是
- A.A⊆B
- B.A?B
- C.A=B
- D.A∩B=φ
B
分析:根据题意可知集合A与集合B都为点集,然后画出相应的图象,根据子集与真子集的定义得出集合A与集合B的关系.
解答:
解:集合A={(x,y)|y=2x},
表示y=2x上点的集合,画出图象
B={(x,y)|y>0,x∈R}表示x轴上方的点的集合
∴集合A是集合B的真子集即A?B
故选B
点评:本题主要考查了指数函数的图象,以及子集与真子集的概念,同时考查了数形结合的思想,属于基础题.
分析:根据题意可知集合A与集合B都为点集,然后画出相应的图象,根据子集与真子集的定义得出集合A与集合B的关系.
解答:
表示y=2x上点的集合,画出图象
B={(x,y)|y>0,x∈R}表示x轴上方的点的集合
∴集合A是集合B的真子集即A?B
故选B
点评:本题主要考查了指数函数的图象,以及子集与真子集的概念,同时考查了数形结合的思想,属于基础题.
练习册系列答案
相关题目
设集合A=B={(x,y)|x∈R,y∈R},从A到B的映射f:(x,y)→(x+2y,2x-y),则在映射f下B中的元素(1,1)对应的A中元素为( )
| A、(1,3) | ||||
| B、(1,1) | ||||
C、(
| ||||
D、(
|