题目内容
已知函数f(x)=
(x>0)
(1)当x1>0,x2>0且f(x1)•f(x2)=1时,求证:x1•x2≥3+2
(2)若数列{an}满足a1=1an>0an+1=f(an)(n∈N*)求数列{an}的通项公式.
| x2 |
| 2x+1 |
(1)当x1>0,x2>0且f(x1)•f(x2)=1时,求证:x1•x2≥3+2
| 2 |
(2)若数列{an}满足a1=1an>0an+1=f(an)(n∈N*)求数列{an}的通项公式.
(1)证明:∵x1>0,x2>0,f(x1)•f(x2)=1,
∴
•
=1,…(2分)
∴(x1x2)2=(2x1+1)(2x2+1)
=4x1x2+2(x1+x2)+1
≥4x1x2+4
+1
=(2
+1)2.…(4分)
∴x1x2≥2
+1,
∴(
-1)2≥2,
∴
-1≥
,或
-1≤-
(舍去).
∴
≥
+1,
∴x1x2≥(
+1)2=3+2
.…(6分)
(2)解法一:∵a1=1,an>0,an+1=f(an)=
,
∴
=
=
+
=(1+
)2-1,
∴1+
=(1+
)2.…(8分)
∴lg(1+
)=lg(1+
)2=2lg(1+
).…(10分)
∴数列{lg(1+
)}是首项为lg(1+
)=lg2,公比为2的等比数列.
∴lg(1+
)=2n-1•lg2=lg22n-1.…(12分)
∴1+
=22n-1,
∴an=
.…(14分)
解法二:∵a1=1,an>0,an+1=f(an)=
,
∴
=
=
=(
)2,…(8分)
∴lg(
)=lg(
)2=2lg(
).…(10分)
∴数列{lg(
)}是首项为lg(
)=lg
,公比为2的等比数列.
∴lg(
)=2n-1•lg
=lg(
)2n-1,…(12分)
∴
=(
)2n-1,
∴an=
.…(14分)
∴
| x12 |
| 2x1+1 |
| x22 |
| 2x2+1 |
∴(x1x2)2=(2x1+1)(2x2+1)
=4x1x2+2(x1+x2)+1
≥4x1x2+4
| x1x2 |
=(2
| x1x2 |
∴x1x2≥2
| x1x2 |
∴(
| x1x2 |
∴
| x1x2 |
| 2 |
| x1x2 |
| 2 |
∴
| x1x2 |
| 2 |
∴x1x2≥(
| 2 |
| 2 |
(2)解法一:∵a1=1,an>0,an+1=f(an)=
| an2 |
| 2an+1 |
∴
| 1 |
| an+1 |
| 2an+1 |
| an2 |
| 2 |
| an |
| 1 |
| an2 |
| 1 |
| an |
∴1+
| 1 |
| an+1 |
| 1 |
| an |
∴lg(1+
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
∴数列{lg(1+
| 1 |
| an |
| 1 |
| a1 |
∴lg(1+
| 1 |
| an |
∴1+
| 1 |
| an |
∴an=
| 1 |
| 22n-1-1 |
解法二:∵a1=1,an>0,an+1=f(an)=
| an2 |
| 2an+1 |
∴
| an+1 |
| 1+an+1 |
| ||
1+
|
| an2 |
| an2+2an+1 |
| an |
| 1+an |
∴lg(
| an+1 |
| 1+an+1 |
| an |
| 1+an |
| an |
| 1+an |
∴数列{lg(
| a n |
| 1+an |
| a1 |
| 1+a1 |
| 1 |
| 2 |
∴lg(
| an |
| 1+an |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| an |
| 1+an |
| 1 |
| 2 |
∴an=
| 1 |
| 22n-1-1 |
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|