题目内容
已知数列{an}的各项均为正数,记A(n)=a1+a2+……+an,B(n)=a2+a3+……+an+1,C(n)=a3+a4+……+an+2,n=1,2,……
(1)若a1=1,a2=5,且对任意n∈N﹡,三个数A(n),B(n),C(n)组成等差数列,求数列{ an }的通项公式.
(2)证明:数列{ an }是公比为q的等比数列的充分必要条件是:对任意
,三个数A(n),B(n),C(n)组成公比为q的等比数列.
(1)若a1=1,a2=5,且对任意n∈N﹡,三个数A(n),B(n),C(n)组成等差数列,求数列{ an }的通项公式.
(2)证明:数列{ an }是公比为q的等比数列的充分必要条件是:对任意
(1)
(2)见解析
(2)见解析
解(1)对任意
故数列
(Ⅱ)(1)必要性:若数列
即
(2)充分性:若对于任意
则
于是
由
因为
综上所述,数列
【点评】本题考查等差数列、等比数列的定义、性质及充要条件的证明.第一问由等差数列定义可得;第二问要从充分性、必要性两方面来证明,利用等比数列的定义及性质易得证.
练习册系列答案
相关题目