题目内容

如图,在底面为等腰梯形的四棱锥P-ABCD中,PA⊥底面ABCD,AB∥CD,AB=7CD=7,BC=AD=5,PA=8,E是PD上任意一点,且数学公式
(1)求λ为何值时,PB∥平面ACE;
(2)在(1)的条件下,求三棱锥D-ACE的体积.

解:(1)连接BD交AC于F,连接EF;
因为PB∥平面ACE.由直线与平面平行的性质可知
PB∥EF,
∴△PDB∽△EDF,
底面ABCD中,AB∥CD,
∴△AFB∽△CFD;
∵AB=7CD=7,

(2)因为PA⊥底面ABCD,AB=7CD=7,BC=AD=5,PA=8,
,所以E到底面ABCD的距离是1,
过D作DM⊥AB于M,AD=5,AM=3,∴DM=4,
三棱锥D-ACE的体积,就是VE-ACD
所以
分析:(1)连接BD交AC于F,PB∥平面ACE,通过三角形相似,列出比例关系,求出λ的值;
(2)在(1)的条件下,三棱锥D-ACE的体积,转化为VE-ACD,求出底面面积,E到底面的距离,即可求出体积.
点评:本题考查空间几何体的有关证明和计算,三角形的相似,体积的求法,考查计算能力.
练习册系列答案
相关题目

 [番茄花园1] 

如图,已知四棱锥的底面为等腰梯形,,,垂足为是四棱锥的高。

(Ⅰ)证明:平面 平面;

(Ⅱ)若,60°,求四棱锥的体积。

请考生在第(22)、(23)、(24)三题中任选一题作答,如果多做,则按所做的第一题计分。作答时用2B铅笔在答题卡上把所选题目的题号涂黑。

 


 [番茄花园1]1.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网