题目内容
已知p(p≥2)是给定的某个正整数,数列{an}满足:a1=1,(k+1)ak+1=p(k-p)ak,其中k=1,2,3,…,p-1.
(I)设p=4,求a2,a3,a4;
(II)求a1+a2+a3+…+ap.
(I)设p=4,求a2,a3,a4;
(II)求a1+a2+a3+…+ap.
(Ⅰ)由(k+1)ak+1=p(k-p)ak得
=p×
,k=1,2,3,…,p-1
即
=-4×
=-6,a2=-6a1=-6;
=-4×
=-
,a3=16,
=-4×
=-1,a4=-16; (3分)
(Ⅱ)由(k+1)ak+1=p(k-p)ak
得:
=p×
,k=1,2,3,…,p-1
即
=-p×
,
=-p×
,…,
=-p×
,
以上各式相乘得
=(-p)k-1×
(5分)
∴ak=(-p)k-1×
=(-p)k-1×
=
×
=-(-p)k-2×
=-
(-p)k,k=1,2,3,…,p (7分)
∴a1+a2+a3+…+ap=-
[
(-p)1+
(-p)2+
(-p)3+…+
(-p)p]=-
[(1-p)p-1] (10分)
| ak+1 |
| ak |
| k-p |
| k+1 |
即
| a2 |
| a1 |
| 4-1 |
| 2 |
| a3 |
| a2 |
| 4-2 |
| 3 |
| 8 |
| 3 |
| a4 |
| a3 |
| 4-3 |
| 4 |
(Ⅱ)由(k+1)ak+1=p(k-p)ak
得:
| ak+1 |
| ak |
| k-p |
| k+1 |
即
| a2 |
| a1 |
| p-1 |
| 2 |
| a3 |
| a2 |
| p-2 |
| 3 |
| ak |
| ak-1 |
| p-(k-1) |
| k |
以上各式相乘得
| ak |
| a1 |
| (p-1)(p-2)(p-3)…(p-k+1) |
| k! |
∴ak=(-p)k-1×
| (p-1)(p-2)(p-3)…(p-k+1) |
| k! |
=(-p)k-1×
| (p-1)! |
| k!(p-k)! |
| (-p)k-1 |
| p |
| p! |
| k!(p-k)! |
=-(-p)k-2×
| C | kp |
| 1 |
| p2 |
| C | kp |
∴a1+a2+a3+…+ap=-
| 1 |
| p2 |
| C | 1p |
| C | 2p |
| C | 3p |
| C | pp |
| 1 |
| p2 |
练习册系列答案
相关题目